Creep of polycrystalline anorthite and diopside

[1] We investigated the creep strength of fine-grained aggregates of single-phase anorthite and diopside at temperatures ranging from 1253 to 1553 K at flow stress between 5 and 250 MPa and at 0.1 MPa pressure. Powders of crushed natural, iron-bearing diopside and of pure anorthite and diopside glasses were hot pressed at temperatures of 1373–1423 K and 300 MPa confining pressure in a gas-medium apparatus and at 1423–1473 K and 2200 MPa in a piston-cylinder device. Grain size of the synthetic materials was 3.4 μm for anorthite and between 1.5 and 7.5 μm for diopside. Creep tests were performed using two uniaxial creep machines in Toulouse and Potsdam. Synthetic anorthite and diopside aggregates showed a stress exponent n ≈ 1 and a grain size exponent m ≈ −3, suggesting grain boundary diffusion-controlled creep. Creep rates were independent of oxygen fugacity. Coarser-grained (43 μm) iron-bearing samples showed a transition from diffusion-controlled creep to dislocation creep with n ≈ 5. Activation energies for diffusion and dislocation creep of iron-bearing diopside polycrystals were Q = 364–468 and 719 kJ/mol, respectively. The activation energies for diffusion-controlled creep of synthetic fine-grained anorthite and diopside aggregates were Q = 362–383 and 558 kJ/mol, respectively. At similar thermodynamic conditions, diffusion creep rates of diopside are nearly 10 times lower than for anorthite. Irrespective of processing route, the data for anorthite and diopside aggregates from both laboratories are in good agreement.

[1]  J. T. Heege,et al.  Relationship between dynamic recrystallization, grain size distribution and rheology , 2002 .

[2]  O. Jaoul,et al.  Anisotropy of oxygen diffusion in diopside , 2001 .

[3]  S. Mackwell,et al.  Creep of dry clinopyroxene aggregates , 2001 .

[4]  G. Dresen,et al.  The effect of melt distribution on the rheology of plagioclase rocks , 2000 .

[5]  G. Dresen,et al.  Dislocation and diffusion creep of synthetic anorthite aggregates , 2000 .

[6]  G. Dresen,et al.  Grain boundary diffusion creep of synthetic anorthite aggregates: The effect of water , 1999 .

[7]  G. Dresen,et al.  High-temperature creep of partially molten plagioclase aggregates , 1998 .

[8]  V. Sautter,et al.  Calcium self-diffusion in natural diopside single crystals , 1996 .

[9]  G. Dresen,et al.  Diffusion creep of fine‐grained polycrystalline anorthite at high temperature , 1996 .

[10]  O. Jaoul,et al.  Silicon self-diffusion in quartz and diopside measured by nuclear micro-analysis methods , 1996 .

[11]  G. Dresen,et al.  Kinetics of grain growth in anorthite , 1996 .

[12]  G. Godard,et al.  Deformation-induced clinopyroxene fabrics from eclogites , 1995 .

[13]  B. Evans,et al.  Strength of the lithosphere: Constraints imposed by laboratory experiments , 1995 .

[14]  J. Tullis,et al.  A flow law for dislocation creep of quartz aggregates determined with the molten salt cell , 1995 .

[15]  G. Rossman,et al.  Quantitative analysis of trace OH in garnet and pyroxenes , 1995 .

[16]  Greg Hirth,et al.  Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the diffusion creep regime , 1995 .

[17]  Jian N. Wang,et al.  The effect of grain size distribution on the rheological behavior of polycrystalline materials , 1994 .

[18]  P. Raterron,et al.  High-temperature deformation of diopside crystal: 3. Influences of pO2 and SiO2 precipitation , 1994 .

[19]  P. Raterron,et al.  High temperature deformation of diopside IV: predominance of {110} glide above 1000°C , 1994 .

[20]  P. Richet,et al.  Premelting effects in minerals: an experimental study , 1994 .

[21]  W. Skrotzki Defect structure and deformation mechanisms in naturally deformed augite and enstatite , 1994 .

[22]  P. Raterron,et al.  Early partial melting in pyroxenes , 1993 .

[23]  M. Paterson,et al.  Preparation and deformation of synthetic aggregates of quartz , 1992 .

[24]  P. Raterron,et al.  High‐temperature deformation of diopside single crystal: 1. Mechanical data , 1991 .

[25]  F. Horowitz,et al.  Flow laws of polyphase aggregates from end-member flow laws , 1991 .

[26]  E. Rutter,et al.  The role of tectonic grain size reduction in the rheological stratification of the lithosphere , 1988 .

[27]  N. Olesen Plagioclase fabric development in a high-grade shear zone, Jotunheimen, Norway , 1987 .

[28]  A. Beran OH groups in nominally anhydrous framework structures: An infrared spectroscopic investigation of danburite and labradorite , 1987 .

[29]  D. Mainprice,et al.  Deformation mechanisms in a high-temperature quartz-feldspar mylonite: evidence for superplastic flow in the lower continental crust , 1987 .

[30]  A. Beran A model of water allocation in alkali feldspar, derived from infrared-spectroscopic investigations , 1986 .

[31]  D. Kohlstedt,et al.  Rheology and structure of olivine‐basalt partial melts , 1986 .

[32]  J. Tullis,et al.  Dynamic recrystallization of feldspar: A mechanism for ductile shear zone formation , 1985 .

[33]  T. S. Olsen,et al.  Natural deformation and recrystallization of some intermediate plagioclase feldspars , 1985 .

[34]  D. Kohlstedt,et al.  Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing , 1984 .

[35]  W. Brace Permeability of crystalline rocks: New in situ measurements , 1984 .

[36]  W. F. Brace,et al.  Limits on lithospheric stress imposed by laboratory experiments , 1980 .

[37]  R. Barnett,et al.  Superplastic flow and changes in crystal chemistry of feldspars , 1979 .

[38]  S. White Tectonic deformation and recrystallisation of oligoclase , 1975 .

[39]  Y. Guéguen,et al.  SP-Mylonites: Origin of some mylonites by superplastic flow , 1975 .

[40]  Mel I. Mendelson,et al.  Average Grain Size in Polycrystalline Ceramics , 1969 .

[41]  C. Spiers,et al.  The influence of dynamic recrystallization on the grain size distribution and rheological behaviour of Carrara marble deformed in axial compression , 2002, Geological Society, London, Special Publications.

[42]  M. Javoy,et al.  Mesures quantitatives de carbone et d'eau dans les verres basaltiques naturels par Spectroscopie Infrarouge. Partie I: le carbone , 1996 .

[43]  Philippe Courtial Proprietes thermodynamiques des silicates fondus et des mineraux au voisinage de la fusion , 1993 .

[44]  Paul Raterron Fluage et fusion partielle precoce du diopside monocristallin , 1992 .

[45]  J. White Albite deformation within a basal ophiolite shear zone , 1990, Geological Society, London, Special Publications.

[46]  C. Mawer,et al.  Extreme ductility of feldspars from a mylonite, Parry Sound, Canada , 1986 .

[47]  J. Starkey,et al.  Plagioclase microfabrics in a ductile shear zone from the Jotun Nappe, Norway , 1985 .