Electrically Addressable Biomolecular Functionalization of Carbon Nanotube and Carbon Nanofiber Electrodes

We demonstrate the electrically addressable biomolecular functionalization of single-walled carbon nanotube electrodes and vertically aligned carbon nanofiber electrodes. The method uses an electrochemical reaction in which nitro groups on specific nanostructures are reduced to amino groups and then used to covalently link DNA to only these nanostructures. We demonstrate fabrication of a four-element array of distinct DNA oligonucleotides on carbon nanotube electrodes and the addressable functionalization of submicron bundles of <100 nm diameter vertically aligned carbon nanofibers. DNA hybridization shows that the DNA-modified nanoscale structures have excellent biological selectivity.