On the extension of Householder's method for weighted Moore-Penrose inverse

This note discusses how to extend and use the well-known method of Householder (1964) [6] for finding weighted Moore-Penrose inverse. The discussions cover both theoretical and numerical aspects. An approach for accelerating the initial phase of convergence will be contributed. Some tests will also be employed to check the validity and superiority of the results over the Schulz method.

[1]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[2]  Ronald R. Coifman,et al.  Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations , 1993, SIAM J. Sci. Comput..

[3]  T. Andersen THE ECONOMETRICS OF FINANCIAL MARKETS , 1998, Econometric Theory.

[4]  F. Soleymani Efficient optimal eighth-order derivative-free methods for nonlinear equations , 2013 .

[5]  A. Lo,et al.  THE ECONOMETRICS OF FINANCIAL MARKETS , 1996, Macroeconomic Dynamics.

[6]  Alexander Ostrowski Analyse Mathématique. — Sur quelques transformations de la série de Liouville-Neumann , 1984 .

[7]  Nail H. Ibragimov Comments on the paper "Conservation laws of the (2 + 1)-dimensional KP equation and Burgers equation with variable coefficients and cross terms" by Li-Hua Zhang , 2014, Appl. Math. Comput..

[8]  Xian Zhang,et al.  An improved Newton iteration for the weighted Moore-Penrose inverse , 2006, Appl. Math. Comput..

[9]  Fazlollah Soleymani,et al.  An iterative method for computing the approximate inverse of a square matrix and the Moore-Penrose inverse of a non-square matrix , 2013, Appl. Math. Comput..

[10]  Fazlollah Soleymani,et al.  On the computation of weighted Moore-Penrose inverse using a high-order matrix method , 2013, Comput. Math. Appl..

[11]  Fazlollah Soleymani,et al.  A Modified Eighth-Order Derivative-Free Root Solver , 2012 .

[12]  G. Schulz Iterative Berechung der reziproken Matrix , 1933 .

[13]  Predrag S. Stanimirovic,et al.  A note on the stability of a pth order iteration for finding generalized inverses , 2014, Appl. Math. Lett..

[14]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[15]  Fazlollah Soleymani ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES , 2013 .

[16]  Syamal K. Sen,et al.  Chemical equation balancing: An integer programming approach , 2006, Math. Comput. Model..

[17]  Guoliang Chen,et al.  The generalized weighted Moore-Penrose inverse , 2007 .

[18]  Fazlollah Soleymani,et al.  An efficient matrix iteration for computing weighted Moore-Penrose inverse , 2014, Appl. Math. Comput..

[19]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .