Matchgates and classical simulation of quantum circuits

Let G(A, B) denote the two-qubit gate that acts as the one-qubit SU(2) gates A and B in the even and odd parity subspaces, respectively, of two qubits. Using a Clifford algebra formalism, we show that arbitrary uniform families of circuits of these gates, restricted to act only on nearest neighbour (n.n.) qubit lines, can be classically efficiently simulated. This reproduces a result originally proved by Valiant using his matchgate formalism, and subsequently related by others to free fermionic physics. We further show that if the n.n. condition is slightly relaxed, to allow the same gates to act only on n.n. and next n.n. qubit lines, then the resulting circuits can efficiently perform universal quantum computation. From this point of view, the gap between efficient classical and quantum computational power is bridged by a very modest use of a seemingly innocuous resource (qubit swapping). We also extend the simulation result above in various ways. In particular, by exploiting properties of Clifford operations in conjunction with the Jordan–Wigner representation of a Clifford algebra, we show how one may generalize the simulation result above to provide further classes of classically efficiently simulatable quantum circuits, which we call Gaussian quantum circuits.

[1]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[2]  E. Wigner,et al.  About the Pauli exclusion principle , 1928 .

[3]  J. Thomson,et al.  Philosophical Magazine , 1945, Nature.

[4]  P. Morse Annals of Physics , 1957, Nature.

[5]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[6]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .

[7]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[8]  D. Hoffman,et al.  Generalization of Euler Angles to N-Dimensional Orthogonal Matrices , 1972 .

[9]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[10]  Daniel R. Simon On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[11]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[12]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[13]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[14]  L. Landau,et al.  Fermionic quantum computation , 2000 .

[15]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[16]  Richard Cleve,et al.  Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[17]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[18]  Emanuel Knill,et al.  Fermionic Linear Optics and Matchgates , 2001, ArXiv.

[19]  David P. DiVincenzo,et al.  Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..

[20]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[21]  M. Jerrum Counting, Sampling and Integrating: Algorithms and Complexity , 2003 .

[22]  David P. DiVincenzo,et al.  Adaptive quantum computation, constant depth quantum circuits and arthur-merlin games , 2002, Quantum Inf. Comput..

[23]  D. DiVincenzo,et al.  Fermionic Linear Optics Revisited , 2004, quant-ph/0403031.

[24]  Jin-Yi Cai,et al.  Valiant's Holant Theorem and matchgate tensors , 2007, Theor. Comput. Sci..

[25]  Sergey Bravyi,et al.  Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..

[26]  R. Jozsa On the simulation of quantum circuits , 2006, quant-ph/0603163.

[27]  N. Yoran,et al.  Classical simulation of limited-width cluster-state quantum computation. , 2006, Physical review letters.

[28]  Jin-Yi Cai,et al.  Valiant's Holant Theorem and Matchgate Tensors , 2006, TAMC.

[29]  Howard Barnum,et al.  Efficient solvability of Hamiltonians and limits on the power of some quantum computational models. , 2006, Physical review letters.

[30]  M. Plenio Remarks on duality transformations and generalized stabilizer states , 2007, quant-ph/0703007.

[31]  Jin-Yi Cai,et al.  On the Theory of Matchgate Computations , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[32]  S. Bravyi Contraction of matchgate tensor networks on non-planar graphs , 2008, 0801.2989.

[33]  Frank Verstraete,et al.  Quantum circuits for strongly correlated quantum systems , 2008, ArXiv.

[34]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[35]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.