Matchgates and classical simulation of quantum circuits
暂无分享,去创建一个
[1] E. Wigner,et al. Über das Paulische Äquivalenzverbot , 1928 .
[2] E. Wigner,et al. About the Pauli exclusion principle , 1928 .
[3] J. Thomson,et al. Philosophical Magazine , 1945, Nature.
[4] P. Morse. Annals of Physics , 1957, Nature.
[5] P. W. Kasteleyn. The Statistics of Dimers on a Lattice , 1961 .
[6] P. W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .
[7] M. Fisher,et al. Dimer problem in statistical mechanics-an exact result , 1961 .
[8] D. Hoffman,et al. Generalization of Euler Angles to N-Dimensional Orthogonal Matrices , 1972 .
[9] D. Deutsch,et al. Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[10] Daniel R. Simon. On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[11] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[12] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[13] Ran Raz,et al. Exponential separation of quantum and classical communication complexity , 1999, STOC '99.
[14] L. Landau,et al. Fermionic quantum computation , 2000 .
[15] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[16] Richard Cleve,et al. Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[17] David P. DiVincenzo,et al. Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.
[18] Emanuel Knill,et al. Fermionic Linear Optics and Matchgates , 2001, ArXiv.
[19] David P. DiVincenzo,et al. Encoded universality from a single physical interaction , 2001, Quantum Inf. Comput..
[20] Leslie G. Valiant,et al. Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..
[21] M. Jerrum. Counting, Sampling and Integrating: Algorithms and Complexity , 2003 .
[22] David P. DiVincenzo,et al. Adaptive quantum computation, constant depth quantum circuits and arthur-merlin games , 2002, Quantum Inf. Comput..
[23] D. DiVincenzo,et al. Fermionic Linear Optics Revisited , 2004, quant-ph/0403031.
[24] Jin-Yi Cai,et al. Valiant's Holant Theorem and matchgate tensors , 2007, Theor. Comput. Sci..
[25] Sergey Bravyi,et al. Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..
[26] R. Jozsa. On the simulation of quantum circuits , 2006, quant-ph/0603163.
[27] N. Yoran,et al. Classical simulation of limited-width cluster-state quantum computation. , 2006, Physical review letters.
[28] Jin-Yi Cai,et al. Valiant's Holant Theorem and Matchgate Tensors , 2006, TAMC.
[29] Howard Barnum,et al. Efficient solvability of Hamiltonians and limits on the power of some quantum computational models. , 2006, Physical review letters.
[30] M. Plenio. Remarks on duality transformations and generalized stabilizer states , 2007, quant-ph/0703007.
[31] Jin-Yi Cai,et al. On the Theory of Matchgate Computations , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).
[32] S. Bravyi. Contraction of matchgate tensor networks on non-planar graphs , 2008, 0801.2989.
[33] Frank Verstraete,et al. Quantum circuits for strongly correlated quantum systems , 2008, ArXiv.
[34] Igor L. Markov,et al. Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..
[35] John Watrous,et al. Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.