A Pseudo-Marginal Perspective on the ABC Algorithm

[1]  J. Rosenthal,et al.  On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.

[2]  Christophe Andrieu,et al.  Establishing some order amongst exact approximations of MCMCs , 2014, 1404.6909.

[3]  Brunero Liseo,et al.  Approximate Integrated Likelihood via ABC methods , 2014, 1403.0387.

[4]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[5]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[6]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[7]  J.-M. Marin,et al.  Relevant statistics for Bayesian model choice , 2011, 1110.4700.

[8]  N. Shephard,et al.  BAYESIAN INFERENCE BASED ONLY ON SIMULATED LIKELIHOOD: PARTICLE FILTER ANALYSIS OF DYNAMIC ECONOMIC MODELS , 2011, Econometric Theory.

[9]  Hariharan Narayanan,et al.  Random Walk Approach to Regret Minimization , 2010, NIPS.

[10]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[11]  D. Woodard,et al.  Conditions for Rapid and Torpid Mixing of Parallel and Simulated Tempering on Multimodal Distributions , 2009, 0906.2341.

[12]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[14]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[15]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.