Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences.

PURPOSE To compare the diagnostic performances of three T1-weighted 3.0-T magnetic resonance (MR) sequences at carotid intraplaque hemorrhage (IPH) imaging, with histo logic analysis as the reference standard. MATERIALS AND METHODS Institutional review board approval and informed consent were obtained for this HIPAA-compliant study. Twenty patients scheduled for carotid endarterectomy underwent 3.0-T carotid MR imaging, including two-dimensional fast spin-echo, three-dimensional time-of-flight (TOF), and three-dimensional magnetization-prepared rapid acquisition gradient-echo (RAGE) sequences. Two reviewers blinded to the histologic findings assessed the presence, area, and signal intensity of IPH with each sequence. Detection statistics (sensitivity, specificity, and Cohen kappa values) and agreement between area measurements (Pearson correlation coefficient [r] values) were calculated for each sequence. RESULTS When all 231 available MR sections were included for analysis, the magnetization-prepared RAGE (kappa = 0.53) and fast spin-echo (kappa = 0.42) sequences yielded moderate agreement between MR and histologic measurements, while the TOF sequence yielded fair agreement (k = 0.33). However, when 47 sections with either small IPHs or heavily calcified IPHs were excluded, sensitivity, specificity, and kappa values, respectively, were 80%, 97%, and 0.80 for magnetization-prepared RAGE imaging; 70%, 92%, and 0.63 for fast spin-echo imaging; and 56%, 96%, and 0.57 for TOF imaging. MR imaging-histologic analysis correlation for IPH area was highest with magnetization-prepared RAGE imaging (r = 0.813), followed by TOF (r = 0.745) and fast spin-echo (r = 0.497) imaging. The capability of these three sequences for IPH detection appeared to be in good agreement with the quantitative contrast of IPH versus background plaque tissue. CONCLUSION The magnetization-prepared RAGE sequence, as compared with the fast spin-echo and TOF sequences, demonstrated higher diagnostic capability for the detection and quantification of IPH. Potential limitations of 3.0-T IPH MR imaging are related to hemorrhage size and coexisting calcification.

[1]  David C. Zhu,et al.  An optimized 3D inversion recovery prepared fast spoiled gradient recalled sequence for carotid plaque hemorrhage imaging at 3.0 T. , 2008, Magnetic resonance imaging.

[2]  Sean Symons,et al.  In vivo 3D high-spatial-resolution MR imaging of intraplaque hemorrhage. , 2008, Radiology.

[3]  Dorothee Auer,et al.  Detection of intraplaque hemorrhage by magnetic resonance imaging in symptomatic patients with mild to moderate carotid stenosis predicts recurrent neurological events. , 2008, Journal of vascular surgery.

[4]  B. Wyman,et al.  Carotid Plaque Morphology and Composition: Initial Comparison , 2008 .

[5]  L. Rohde,et al.  Intraplaque hemorrhage assessed by high-resolution magnetic resonance imaging and C-reactive protein in carotid atherosclerosis. , 2007, Journal of vascular surgery.

[6]  Fei Liu,et al.  Magnetic Resonance Imaging of Carotid Atherosclerosis: Plaque Analysis , 2007, Topics in magnetic resonance imaging : TMRI.

[7]  Dorothee P Auer,et al.  Carotid intraplaque hemorrhage detected by magnetic resonance imaging predicts embolization during carotid endarterectomy. , 2007, Journal of vascular surgery.

[8]  Dorothee P Auer,et al.  Carotid Intraplaque Hemorrhage Predicts Recurrent Symptoms in Patients With High-Grade Carotid Stenosis , 2007, Stroke.

[9]  K. Iihara,et al.  ORIGINAL RESEARCH Association between Signal Hyperintensity on T1-Weighted MR Imaging of Carotid Plaques and Ipsilateral Ischemic Events , 2007 .

[10]  Fei Liu,et al.  MRI of atherosclerosis in clinical trials , 2006, NMR in biomedicine.

[11]  C. Yuan,et al.  Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging. , 2006, Radiology.

[12]  M. McConnell,et al.  Multicontrast black‐blood MRI of carotid arteries: Comparison between 1.5 and 3 tesla magnetic field strengths , 2006, Journal of magnetic resonance imaging : JMRI.

[13]  Chun Yuan,et al.  Association Between Carotid Plaque Characteristics and Subsequent Ischemic Cerebrovascular Events: A Prospective Assessment With MRI—Initial Results , 2006, Stroke.

[14]  Z. Fayad,et al.  Comparison of gated and nongated fast multislice black‐blood carotid imaging using rapid extended coverage and inflow/outflow saturation techniques , 2005, Journal of magnetic resonance imaging : JMRI.

[15]  Chun Yuan,et al.  Presence of Intraplaque Hemorrhage Stimulates Progression of Carotid Atherosclerotic Plaques: A High-Resolution Magnetic Resonance Imaging Study , 2005, Circulation.

[16]  C. Yuan,et al.  Quantitative Evaluation of Carotid Plaque Composition by In Vivo MRI , 2004, Arteriosclerosis, thrombosis, and vascular biology.

[17]  W S Kerwin,et al.  Differentiation of Intraplaque Versus Juxtaluminal Hemorrhage/Thrombus in Advanced Human Carotid Atherosclerotic Lesions by In Vivo Magnetic Resonance Imaging , 2004, Circulation.

[18]  Alfons G H Kessels,et al.  In vivo detection of hemorrhage in human atherosclerotic plaques with magnetic resonance imaging , 2004, Journal of magnetic resonance imaging : JMRI.

[19]  Chun Yuan,et al.  Hemorrhage in the Atherosclerotic Carotid Plaque: A High-Resolution MRI Study , 2004, Stroke.

[20]  Renu Virmani,et al.  Intraplaque hemorrhage and progression of coronary atheroma. , 2003, The New England journal of medicine.

[21]  E. Boerwinkle,et al.  From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. , 2003, Circulation.

[22]  Anne L. Martel,et al.  Prevalence of Complicated Carotid Atheroma as Detected by Magnetic Resonance Direct Thrombus Imaging in Patients With Suspected Carotid Artery Stenosis and Previous Acute Cerebral Ischemia , 2003, Circulation.

[23]  Anne L. Martel,et al.  Characterization of Complicated Carotid Plaque With Magnetic Resonance Direct Thrombus Imaging in Patients With Cerebral Ischemia , 2003, Circulation.

[24]  Chun Yuan,et al.  T1‐insensitive flow suppression using quadruple inversion‐recovery , 2002, Magnetic resonance in medicine.

[25]  Chun Yuan,et al.  Classification of Human Carotid Atherosclerotic Lesions With In Vivo Multicontrast Magnetic Resonance Imaging , 2002, Circulation.

[26]  W S Kerwin,et al.  In Vivo Accuracy of Multispectral Magnetic Resonance Imaging for Identifying Lipid-Rich Necrotic Cores and Intraplaque Hemorrhage in Advanced Human Carotid Plaques , 2001, Circulation.

[27]  R. Virmani,et al.  Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[28]  E. McVeigh,et al.  Signal‐to‐noise measurements in magnitude images from NMR phased arrays , 1997 .

[29]  V. Fuster,et al.  Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. , 1996, Circulation.

[30]  W D Wagner,et al.  A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. , 1995, Arteriosclerosis, thrombosis, and vascular biology.

[31]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[32]  R. Lusby,et al.  Carotid plaque hemorrhage. Its role in production of cerebral ischemia. , 1982, Archives of surgery.

[33]  M. Okada,et al.  The Hematoxylin-stainability of Decalcified Dentin and the Calcification , 1959 .