Spin decoherence in a two-qubit CPHASE gate: the critical role of tunneling noise

[1]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[2]  N. Kalhor,et al.  Strong spin-photon coupling in silicon , 2017, Science.

[3]  Jacob M. Taylor,et al.  A coherent spin–photon interface in silicon , 2017, Nature.

[4]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[5]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[6]  Xu-Chen Yang,et al.  Theory on the suppression of charge noise using barrier control of a singlet-triplet qubit , 2017, 1704.07975.

[7]  S. Das Sarma,et al.  Randomized Benchmarking of Barrier versus Tilt Control of a Singlet-Triplet Qubit. , 2017, Physical review letters.

[8]  S. Coppersmith,et al.  A decoherence-free subspace in a charge quadrupole qubit , 2016, Nature Communications.

[9]  Werner Wegscheider,et al.  Coherent spin-exchange via a quantum mediator. , 2016, Nature nanotechnology.

[10]  Saeed Fallahi,et al.  High-fidelity entangling gate for double-quantum-dot spin qubits , 2016, 1608.04258.

[11]  Hongwen Jiang,et al.  Comparison of low frequency charge noise in identically patterned Si/SiO2 and Si/SiGe quantum dots , 2016 .

[12]  Mark A. Eriksson,et al.  Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet , 2016, Proceedings of the National Academy of Sciences.

[13]  Charles Tahan,et al.  Charge-noise-insensitive gate operations for always-on, exchange-only qubits , 2016, 1602.00320.

[14]  Saeed Fallahi,et al.  Noise Suppression Using Symmetric Exchange Gates in Spin Qubits. , 2015, Physical review letters.

[15]  Hongwen Jiang,et al.  Tunable Hybrid Qubit in a GaAs Double Quantum Dot. , 2015, Physical review letters.

[16]  S T Merkel,et al.  Supplemental Materials : Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation , 2016 .

[17]  Adele E. Schmitz,et al.  Isotopically enhanced triple-quantum-dot qubit , 2015, Science Advances.

[18]  T. Kontos,et al.  Coherent coupling of a single spin to microwave cavity photons , 2015, Science.

[19]  G. Burkard,et al.  Asymmetric resonant exchange qubit under the influence of electrical noise , 2015, 1502.06109.

[20]  J. R. Petta,et al.  A Reconfigurable Gate Architecture for Si/SiGe Quantum Dots , 2015, 1502.01624.

[21]  S. Tarucha,et al.  Quantum Manipulation of Two-Electron Spin States in Isolated Double Quantum Dots. , 2014, Physical review letters.

[22]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[23]  Erik Nielsen,et al.  Microwave-driven coherent operation of a semiconductor quantum dot charge qubit. , 2014, Nature nanotechnology.

[24]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[25]  A. Dzurak,et al.  Charge offset stability in Si single electron devices with Al gates , 2014, Nanotechnology.

[26]  Andrea Morello,et al.  Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions , 2013, 1312.2197.

[27]  D. Culcer,et al.  Dephasing of Si singlet-triplet qubits due to charge and spin defects , 2013, 1306.4428.

[28]  Gerhard Klimeck,et al.  Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting , 2013, Nature Communications.

[29]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[30]  J. Verduijn Silicon Quantum Electronics , 2012 .

[31]  Mark A. Eriksson,et al.  Embracing the quantum limit in silicon computing , 2011, Nature.

[32]  S. Sarma,et al.  Low-noise conditional operation of singlet-triplet coupled quantum dot qubits , 2011, 1107.3827.

[33]  L. M. K. Vandersypen,et al.  Efficient controlled-phase gate for single-spin qubits in quantum dots , 2010, 1010.0164.

[34]  R. Young,et al.  Implications of Simultaneous Requirements for Low Noise Exchange Gates in Double Quantum Dots , 2009, 0909.0047.

[35]  S. Sarma,et al.  Dephasing of Si spin qubits due to charge noise , 2009, 0906.4555.

[36]  M. Furlan,et al.  Why the long-term charge offset drift in Si single-electron tunneling transistors is much smaller (better) than in metal-based ones: Two-level fluctuator stability , 2008 .

[37]  C. Marcus,et al.  Magnetic field control of exchange and noise immunity in double quantum dots. , 2006, Nano letters.

[38]  S. Coppersmith,et al.  Controllable valley splitting in silicon quantum devices , 2006, cond-mat/0611221.

[39]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[40]  A. Fujiwara,et al.  Valley polarization in Si(100) at zero magnetic field. , 2006, Physical review letters.

[41]  Jacob M. Taylor,et al.  Dephasing of Quantum Bits by a Quasi-Static Mesoscopic Environment , 2005, Quantum Inf. Process..

[42]  S. Das Sarma,et al.  Charge-fluctuation-induced dephasing of exchange-coupled spin qubits. , 2005, Physical review letters.

[43]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[44]  A. Astashkin,et al.  Electron spin relaxation times of phosphorus donors in silicon , 2003, cond-mat/0303006.

[45]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[46]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[47]  G. Guo,et al.  Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment , 1996, quant-ph/9612003.

[48]  M. Weissman 1/f noise and other slow, nonexponential kinetics in condensed matter. , 1988 .

[49]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.