Interpolation with quintic Powell-Sabin splines
暂无分享,去创建一个
[1] Paul Sablonnière,et al. Composite finite elements of class Ck , 1985 .
[2] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[3] Frank Zeilfelder,et al. Scattered Data Fitting by Direct Extension of Local Polynomials to Bivariate Splines , 2004, Adv. Comput. Math..
[4] Larry L. Schumaker,et al. Nonnegativity preserving macro-element interpolation of scattered data , 2010, Comput. Aided Geom. Des..
[5] Paul Dierckx,et al. Surface fitting using convex Powell-Sabin splines , 1994 .
[6] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[7] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[8] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[9] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[10] Ming-Jun Lai,et al. On C 2 quintic spline functions over triangulations of Powell-Sabin's type , 1996 .
[11] Paul Sablonnière,et al. Cr-finite elements of Powell-Sabin type on the three direction mesh , 1996, Adv. Comput. Math..
[12] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..
[13] Paul Dierckx,et al. Algorithms for surface fitting using Powell-Sabin splines , 1992 .
[14] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[15] Hendrik Speleers,et al. A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..
[16] A. Serghini,et al. Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .
[17] Paul Sablonnière,et al. Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .
[18] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[19] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[20] Paul Sablonnière,et al. Composite finite Elements of class C2 , 1987, Topics in Multivariate Approximation.
[21] Hans-Peter Seidel,et al. An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.
[22] Larry L. Schumaker,et al. Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..
[23] Paul Dierckx,et al. Smoothing scattered data with a monotone Powell-Sabin spline surface , 2005, Numerical Algorithms.
[24] Jochen W. Schmidt,et al. Powell-Sabin splines in range restricted interpolation of scattered data , 1994, Computing.