Interpolation with quintic Powell-Sabin splines

We discuss local Hermite interpolation by C^2 quintic Powell-Sabin splines represented in a normalized B-spline basis. We derive explicit formulae for the spline coefficients in this B-spline representation to interpolate given Hermite data. As part of the analysis, we show how tensor algebra can be used to describe polynomials in Bernstein-Bezier form and to simplify their manipulation.

[1]  Paul Sablonnière,et al.  Composite finite elements of class Ck , 1985 .

[2]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[3]  Frank Zeilfelder,et al.  Scattered Data Fitting by Direct Extension of Local Polynomials to Bivariate Splines , 2004, Adv. Comput. Math..

[4]  Larry L. Schumaker,et al.  Nonnegativity preserving macro-element interpolation of scattered data , 2010, Comput. Aided Geom. Des..

[5]  Paul Dierckx,et al.  Surface fitting using convex Powell-Sabin splines , 1994 .

[6]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[7]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[8]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[9]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[10]  Ming-Jun Lai,et al.  On C 2 quintic spline functions over triangulations of Powell-Sabin's type , 1996 .

[11]  Paul Sablonnière,et al.  Cr-finite elements of Powell-Sabin type on the three direction mesh , 1996, Adv. Comput. Math..

[12]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[13]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[14]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[15]  Hendrik Speleers,et al.  A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..

[16]  A. Serghini,et al.  Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .

[17]  Paul Sablonnière,et al.  Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .

[18]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[19]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[20]  Paul Sablonnière,et al.  Composite finite Elements of class C2 , 1987, Topics in Multivariate Approximation.

[21]  Hans-Peter Seidel,et al.  An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.

[22]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..

[23]  Paul Dierckx,et al.  Smoothing scattered data with a monotone Powell-Sabin spline surface , 2005, Numerical Algorithms.

[24]  Jochen W. Schmidt,et al.  Powell-Sabin splines in range restricted interpolation of scattered data , 1994, Computing.