Statistical Abduction with Tabulation

We propose statistical abduction as a first-order logical framework for representing, inferring and learning probabilistic knowledge. It semantically integrates logical abduction with a parameterized distribution over abducibles. We show that statistical abduction combined with tabulated search provides an efficient algorithm for probability computation, a Viterbi-like algorithm for finding the most likely explanation, and an EM learning algorithm (the graphical EM algorithm) for learning parameters associated with the distribution which achieve the same computational complexity as those specialized algorithms for HMMs (hidden Markov models), PCFGs (probabilistic context-free grammars) and sc-BNs (singly connected Bayesian networks).

[1]  Paolo Mancarella,et al.  Abductive Logic Programming , 1992, LPNMR.

[2]  David A. McAllester,et al.  Effective Bayesian Inference for Stochastic Programs , 1997, AAAI/IAAI.

[3]  Chiaki Sakama,et al.  Representing Priorities in Logic Programs , 1996, JICSLP.

[4]  Jerry R. Hobbs,et al.  Interpretation as Abduction , 1993, Artif. Intell..

[5]  Kave Eshghi,et al.  Abductive Planning with Event Calculus , 1988, ICLP/SLP.

[6]  C. S. Wetherell,et al.  Probabilistic Languages: A Review and Some Open Questions , 1980, CSUR.

[7]  V. S. Subrahmanian,et al.  Probabilistic Logic Programming , 1992, Inf. Comput..

[8]  Kellogg S. Booth,et al.  AI meets authoring: User models for untelligent multimedia , 2004, Artificial Intelligence Review.

[9]  Harrison C. White,et al.  An Anatomy Of Kinship , 1963 .

[10]  Yoshitaka Kameya,et al.  Parameter Learning of Logic Programs for Symbolic-Statistical Modeling , 2001, J. Artif. Intell. Res..

[11]  Murray Shanahan,et al.  Prediction is Deduction but Explanation is Abduction , 1989, IJCAI.

[12]  James Cussens,et al.  Loglinear models for first-order probabilistic reasoning , 1999, UAI.

[13]  Kees Doets,et al.  From logic to logic programming , 1994, Foundations of computing series.

[14]  John S. Breese,et al.  CONSTRUCTION OF BELIEF AND DECISION NETWORKS , 1992, Comput. Intell..

[15]  José Manuel Gutiérrez,et al.  Expert Systems and Probabiistic Network Models , 1996 .

[16]  Taisuke Sato,et al.  PRISM: A Language for Symbolic-Statistical Modeling , 1997, IJCAI.

[17]  Hisao Tamaki,et al.  OLD Resolution with Tabulation , 1986, ICLP.

[18]  Eugene Charniak,et al.  Statistical language learning , 1997 .

[19]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[20]  Taisuke Sato Parameterized Logic Programs where Computing Meets Learning , 2001, FLOPS.

[21]  Enrique F. Castillo,et al.  Expert Systems and Probabilistic Network Models , 1996, Monographs in Computer Science.

[22]  Randy Goebel,et al.  Theorist: A Logical Reasoning System for Defaults and Diagnosis , 1987 .

[23]  Taisuke Sato,et al.  Efficient EM Learning with Tabulation for Parameterized Logic Programs , 2000, Computational Logic.

[24]  J. Baker Trainable grammars for speech recognition , 1979 .

[25]  Laks V. S. Lakshmanan,et al.  Probabilistic Deductive Databases , 1994, ILPS.

[26]  Avi Pfeffer,et al.  IBAL: A Probabilistic Rational Programming Language , 2001, IJCAI.

[27]  James Cussens,et al.  Parameter Estimation in Stochastic Logic Programs , 2001, Machine Learning.

[28]  David Poole,et al.  Probabilistic Horn Abduction and Bayesian Networks , 1993, Artif. Intell..

[29]  Taisuke Sato,et al.  A Statistical Learning Method for Logic Programs with Distribution Semantics , 1995, ICLP.

[30]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[31]  V. S. Subrahmanian,et al.  Hybrid Probabilistic Programs , 2000, J. Log. Program..

[32]  Antonis C. Kakas,et al.  The role of abduction in logic programming , 1998 .

[33]  Peter Haddawy,et al.  Answering Queries from Context-Sensitive Probabilistic Knowledge Bases (cid:3) , 1996 .

[34]  Eugene Charniak,et al.  A Neat Theory of Marker Passing , 1986, AAAI.

[35]  Avi Pfeffer,et al.  Learning Probabilities for Noisy First-Order Rules , 1997, IJCAI.

[36]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[37]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[38]  Taisuke Sato,et al.  A Separate-and-Learn Approach to EM Learning of PCFGs , 2001, NLPRS.

[39]  Fahiem Bacchus Using First-Order Probability Logic for the Construction of Bayesian Networks , 1993, UAI.

[40]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .