Efficient plasmonic nanostructures for thin film solar cells

Recent scientific publications have highlighted the possibility of enhancing solar conversion efficiency in thin film solar cells using surface plasmon (SP) waves and resonances. One main strategy is to deposit layers of metal nanoparticles on the top of a thin film silicon solar cell which can increase light absorption and consequently the energy conversion in the frequency range where the silicon intrinsic absorptance is low. In this paper, we investigate the effects produced on the light absorption and scattering by silver nanoparticles, arranged in a periodic pattern, placed on the top of amorphous silicon (α-Si) thin layer. We propose different geometry of metal objects, quantifying the scattering (back and forward) determined by the nanoparticles in dependence of their shapes and Si thickness. The analysis reveals that the thickness of the substrate has huge influence on the scattering, in particular on the back one, when the nanoparticles have corners, whereas it seems less dramatic when rounded profiles are considered (nanospheres).

[1]  C. Borczyskowski,et al.  Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters , 1995 .

[2]  Reuven Gordon,et al.  Light in a subwavelength slit in a metal: Propagation and reflection , 2006 .

[3]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[4]  Anika Kinkhabwala,et al.  Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. , 2006, The Journal of chemical physics.

[5]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[6]  Ludovic Escoubas,et al.  Improving light absorption in organic solar cells by plasmonic contribution , 2009 .

[7]  N. Alford,et al.  Scattering of light into silicon by spherical and hemispherical silver nanoparticles. , 2010, Optics letters.

[8]  D. de Ceglia,et al.  Enhanced transmission and second harmonic generation from subwavelength slits on metal substrates , 2008, SPIE Photonics Europe.

[9]  Alexandra Boltasseva,et al.  Near-field excitation of nanoantenna resonance. , 2007, Optics express.

[10]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[11]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[12]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[13]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[14]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[15]  A. Polman Plasmonic Solar Cells , 2010 .

[16]  A. Polman,et al.  Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon , 2004 .

[17]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[18]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[19]  J Bravo-Abad,et al.  Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Federico Capasso,et al.  Optical properties of surface plasmon resonances of coupled metallic nanorods. , 2007, Optics express.

[21]  J. Wuenschell,et al.  Blue-shift of surface plasmon resonance in a metal nanoslit array structure. , 2009, Optics express.

[22]  B. Kasemo,et al.  Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits. , 2009, Optics express.

[23]  Domenico Pacifici,et al.  Plasmonic nanostructure design for efficient light coupling into solar cells. , 2008, Nano letters.

[24]  B. Kasemo,et al.  Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. , 2007, The Journal of chemical physics.

[25]  Michael Scalora,et al.  Second harmonic generation from nanoslits in metal substrates: applications to palladium-based H2 sensor , 2008 .

[26]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[27]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[28]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[29]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[30]  S. Bozhevolnyi,et al.  Slow-plasmon resonant nanostructures: Scattering and field enhancements , 2007 .

[31]  Masud Mansuripur,et al.  Transmission of light through slit apertures in metallic films , 2005 .

[32]  Vadim A. Markel,et al.  Enhanced Raman scattering from self-affine thin films. , 1996, Optics letters.

[33]  Maria Losurdo,et al.  Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance , 2009 .

[34]  Nanfang Yu,et al.  Plasmonic Quantum Cascade Laser Antenna , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[35]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.