Smooth SQP Methods for Mathematical Programs with Nonlinear Complementarity Constraints

Mathematical programs with nonlinear complementarity constraints are reformulated using better posed but nonsmooth constraints. We introduce a class of functions, parameterized by a real scalar, to approximate these nonsmooth problems by smooth nonlinear programs. This smoothing procedure has the extra benefits that it often improves the prospect of feasibility and stability of the constraints of the associated nonlinear programs and their quadratic approximations. We present two globally convergent algorithms based on sequential quadratic programming (SQP) as applied in exact penalty methods for nonlinear programs. Global convergence of the implicit smooth SQP method depends on existence of a lower-level nondegenerate (strictly complementary) limit point of the iteration sequence. Global convergence of the explicit smooth SQP method depends on a weaker property, i.e., existence of a limit point at which a generalized constraint qualification holds. We also discuss some practical matters relating to computer implementations.

[1]  Jacques Gauvin,et al.  A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming , 1977, Math. Program..

[2]  Michael C. Ferris,et al.  Modeling and Solution Environments for MPEC: GAMS & MATLAB , 1998 .

[3]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[4]  Masao Fukushima,et al.  Some Feasibility Issues in Mathematical Programs with Equilibrium Constraints , 1998, SIAM J. Optim..

[5]  R. Janin Directional derivative of the marginal function in nonlinear programming , 1984 .

[6]  Helmut Kleinmichel,et al.  A New Class of Semismooth Newton-Type Methods for Nonlinear Complementarity Problems , 1998, Comput. Optim. Appl..

[7]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[8]  A. Fischer A special newton-type optimization method , 1992 .

[9]  S. Scholtes,et al.  Exact Penalization of Mathematical Programs with Equilibrium Constraints , 1999 .

[10]  Andreas Fischer,et al.  On finite termination of an iterative method for linear complementarity problems , 1996, Math. Program..

[11]  J. Outrata,et al.  On optimization of systems governed by implicit complementarity problems , 1994 .

[12]  Michal Kočvara,et al.  On the Solution of Optimum Design Problems with Variational Inequalities , 1995 .

[13]  O. L. Mangasariany Mathematical Programming in Machine Learning , 1996 .

[14]  Z. Luo,et al.  Piecewise Sequential Quadratic Programming for Mathematical Programs with Nonlinear Complementarity Constraints , 1998 .

[15]  S Scholtes,et al.  Mathematical programs with equilibrium constraints: stationarity, optimality, and sensitivity , 1997 .

[16]  Zhi-Quan Luo,et al.  Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints , 1996, Math. Program..

[17]  Masao Fukushima,et al.  A Globally Convergent Sequential Quadratic Programming Algorithm for Mathematical Programs with Linear Complementarity Constraints , 1998, Comput. Optim. Appl..

[18]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[19]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[20]  J. Hiriart-Urruty Refinements of necessary optimality conditions in nondifferentiable programming II , 1979 .

[21]  R. Fletcher Practical Methods of Optimization , 1988 .

[22]  M. Florian,et al.  THE NONLINEAR BILEVEL PROGRAMMING PROBLEM: FORMULATIONS, REGULARITY AND OPTIMALITY CONDITIONS , 1993 .

[23]  Jacqueline Morgan,et al.  Stability of Regularized Bilevel Programming Problems , 1997 .

[24]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[25]  S. M. Robinson Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems , 1976 .

[26]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[27]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[28]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[29]  Xiaojun Chen,et al.  A penalized Fischer-Burmeister NCP-function , 2000, Math. Program..

[30]  James V. Burke,et al.  A robust sequential quadratic programming method , 1989, Math. Program..

[31]  Jirí V. Outrata,et al.  A numerical approach to optimization problems with variational inequality constraints , 1995, Math. Program..

[32]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[33]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[34]  M. J. D. Powell,et al.  Variable Metric Methods for Constrained Optimization , 1982, ISMP.

[35]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[36]  Jirí V. Outrata,et al.  On Optimization Problems with Variational Inequality Constraints , 1994, SIAM J. Optim..

[37]  Daniel Ralph,et al.  QPECgen, a MATLAB Generator for Mathematical Programs with Quadratic Objectives and Affine Variational Inequality Constraints , 1999, Comput. Optim. Appl..

[38]  Masao Fukushima,et al.  Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems , 1996, Math. Program..

[39]  J. Hiriart-Urruty Refinements of necessary optimality conditions in nondifferentiable programming I , 1979 .

[40]  Francisco Facchinei,et al.  A smoothing method for mathematical programs with equilibrium constraints , 1999, Math. Program..

[41]  C. Kanzow,et al.  A Penalized Fischer-Burmeister Ncp-Function: Theoretical Investigation And Numerical Results , 1997 .