The maximum order of a strong matching in a random graph

A strong matching S in a given graph G is a set of disjoint edges {el' e2, ... , em} such that no other edge of the graph G connects an end-vertex of ei with an end-vertex of ej,(ei =Iej). Let Gn,p be the random graph on n vertices with fixed edge probability p, 0 < p < 1. It is shown that, with probability tending to 1 as n ~ 00, the maximum size f3 of a strong matching in Gn,p satisfies where Cl and C2 are constants depending only on p, and d = Resume Un couplage fort S dans un graphe G est un ensemble d'aretes disjointes {el' e2, ... , em} tel qu' aucune autre arete du graphe G ne relie une extremite de ei avec une extremite de ej, (ei =Iej). Soit Gn,p Ie graphe aIeatoire an sommets et de probabilite d'arete fixee p, 0 < p < l. On montre qu'avec une probabilite qui tend vers 1 quand n ~ 00, la taille maximum f3 d'un couplage fort dans Gn,p verifie 1 1 logd n "2 logd logd n Cl S; f3 S; logd n "2 logd logd n + C2 ou Cl and C2 sont deux constantes dependant seulement de p, et d = l~P' Australasian Journal of Combinatorics lO( 1994), pp.97-104

[1]  Paul Erdös,et al.  Trees in random graphs , 1983, Discret. Math..

[2]  Paul Erdös,et al.  Addendum to "trees in random graphs" , 1984, Discret. Math..

[3]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.