Penetration dynamics of rods from direct ballistic tests of advanced armor components at 2–3 km/s

Abstract The penetration of semi-infinite steel and spaced-plate armors by continuous and segmented rods has been analyzed and measured by direct ballistic tests, hydrocode calculations, and hydrodynamic models at velocities from 2 to 4 km/s. An empirical equation of rod penetration in semi-infinite steel was formulated from hydrodynamic models of rod impact. Penetrations predicted by the equation agreed well with measured values. Increasing the spacing between segments from one to two diameters increased the penetration significantly (∼20%). Structures to support and align the segments can either increase or decrease the penetration, depending on their design. The relative penetrations of continuous and segmented rods depend on the parameters selected for the comparison: the segmented rod having greater penetration for equal mass and diameter and vice versa for equal mass and length. Tests of segmented rods penetrating spaced-plate armor showed that the armor is defeated by the front segment (or segments) punching a hole in the front plate (or plates) that allows the remaining segmented rod through intact to attack the main armor.