Origin of the Electrical Barrier in Electrolessly Deposited Platinum Nanoparticles on p-Si Surfaces

[1]  J. Robertson,et al.  Extending the metal-induced gap state model of Schottky barriers , 2020, Journal of Vacuum Science & Technology B.

[2]  Brandon D. Piercy,et al.  Characterization of Electronic Transport through Amorphous TiO2 Produced by Atomic Layer Deposition , 2019, The Journal of Physical Chemistry C.

[3]  Kimberly M. Papadantonakis,et al.  Nanoelectrical and Nanoelectrochemical Imaging of Pt/p-Si and Pt/p+ -Si Electrodes. , 2017, ChemSusChem.

[4]  Chengxiang Xiang,et al.  Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. , 2016, Angewandte Chemie.

[5]  Hung-Chih Chang,et al.  Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. , 2015, Nature materials.

[6]  M. Krzywiecki,et al.  Energy level alignment at the Si(1 1 1)/RCA–SiO2/copper(II) phthalocyanine ultra-thin film interface , 2014 .

[7]  Nathan S. Lewis,et al.  An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems , 2013 .

[8]  N. Lewis,et al.  Comparison of the Photoelectrochemical Behavior of H‑Terminated and Methyl-Terminated Si(111) Surfaces in Contact with a Series of One-Electron, Outer-Sphere Redox Couples in CH_3CN , 2012 .

[9]  Ulrich Banach,et al.  Hydrogen Sensors - A review , 2011 .

[10]  Nathan S. Lewis,et al.  Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes , 2011 .

[11]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[12]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[13]  N. Lewis,et al.  The Role of Band Bending in Affecting the Surface Recombination Velocities for Si(111) in Contact with Aqueous Acidic Electrolytes , 2008 .

[14]  S. Pizzini,et al.  Effect of Pt particle size and distribution on photoelectrochemical hydrogen evolution by p-Si photocathodes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[15]  N. Lewis,et al.  Near-surface channel impedance measurements, open-circuit impedance spectra, and differential capacitance vs potential measurements of the fermi level position at Si/ CH3CN contacts , 2007 .

[16]  N. Lewis,et al.  Scanning tunneling spectroscopy of methyl- and ethyl-terminated Si(111) surfaces , 2006 .

[17]  R. Scheer,et al.  Dipole formation and band alignment at the Si(111)/CuInS2 heterojunction , 2002 .

[18]  I. Lundström,et al.  Difference in hydrogen sensitivity between Pt and Pd field-effect devices , 2002 .

[19]  N. Lewis,et al.  Effects of Interfacial Energetics on the Effective Surface Recombination Velocity of Si/Liquid Contacts , 2002 .

[20]  N. Lewis,et al.  Role of inversion layer formation in producing low effective surface recombination velocities at Si/liquid contacts , 2000 .

[21]  N. Lewis,et al.  Preparation of air-stable, low recombination velocity Si(111) surfaces through alkyl termination , 2000 .

[22]  G. Bilger,et al.  Hydrogen evolution on platinum-coated p-silicon photocathodes , 1996 .

[23]  Ingemar Lundström,et al.  Why bother about gas-sensitive field-effect devices? , 1996 .

[24]  Ingemar Lundström,et al.  From hydrogen sensors to olfactory images — twenty years with catalytic field-effect devices , 1993 .

[25]  G. S. Higashi,et al.  Comparison of Si(111) surfaces prepared using aqueous solutions of NH4F versus HF , 1991 .

[26]  N. Lewis,et al.  "Ideal" behavior of the open circuit voltage of semiconductor/liquid junctions , 1989 .

[27]  F. J. Himpsel,et al.  Microscopic structure of the SiO 2 /Si interface , 1988 .

[28]  A. Spetz,et al.  Hydrogen and ammonia response of metal‐silicon dioxide‐silicon structures with thin platinum gates , 1988 .

[29]  Chang,et al.  Unusually low surface-recombination velocity on silicon and germanium surfaces. , 1986, Physical review letters.

[30]  A. Heller Comments on "Photoelectrochemical evolution of hydrogen on p-indium phosphide" , 1985 .

[31]  A. Heller Hydrogen-Evolving Solar Cells , 1984, Science.

[32]  A. Heller,et al.  Photoelectrochemical hydrogen evolution and water photolyzing semiconductor suspensions: properties of platinum group metal catalyst-semiconductor contacts in air and in hydrogen , 1984 .

[33]  Adam Heller,et al.  Efficient p ‐ InP ( Rh ‐ H alloy ) and p ‐ InP ( Re ‐ H alloy ) Hydrogen Evolving Photocathodes , 1982 .

[34]  A. Heller,et al.  11.5% solar conversion efficiency in the photocathodically protected p‐InP/V3+‐V2+‐HCI/C semiconductor liquid junction cell , 1981 .

[35]  A. Heller,et al.  An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with p-InP/VCl3-VCl2-HCl/C , 1980 .

[36]  I. Lundström,et al.  Chemical reactions on palladium surfaces studied with Pd-MOS structures , 1977 .

[37]  C. Svensson,et al.  A hydrogen-sensitive Pd-gate MOS transistor , 1975 .

[38]  Ingemar Lundström,et al.  A hydrogen−sensitive MOS field−effect transistor , 1975 .

[39]  J. F. Dewald The charge distribution at the zinc oxide-electrolyte interface , 1960 .

[40]  J. Robertson,et al.  Origin of Weaker Fermi Level Pinning and Localized Interface States at Metal Silicide Schottky Barriers , 2020, The Journal of Physical Chemistry C.

[41]  Ingemar Lundström,et al.  A hydrogen sensitive Pd-MOS structure working over a wide pressure range , 1984 .

[42]  A. Heller,et al.  Barrier height and leakage reduction in n‐GaAs–platinum group metal Schottky barriers upon exposure to hydrogen , 1983 .

[43]  N. Lewis,et al.  Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes , 1982 .

[44]  W. Bonner,et al.  Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst , 1982 .

[45]  Ingemar Lundström,et al.  Hydrogen sensitive mos-structures part 2: characterization , 1981 .

[46]  A. Heller,et al.  Silicon photocathode behavior in acidic V(II)-V(III) solutions , 1981 .

[47]  F. G. Allen Work function and emission studies on clean silicon surfaces , 1959 .