Sampling of alternatives in Multivariate Extreme Value (MEV) models

We propose a methodology to achieve consistency, asymptotic normality and efficiency, while sampling alternatives in Multivariate Extreme Value (MEV) models, extending a previous result for Logit. We illustrate the methodology and study the finite sample properties of the estimators using Monte Carlo experimentation and real data on residential location choice from Lisbon, Portugal. Experiments show that the proposed methodology is practical, that it outperforms the uncorrected model, and that it yields acceptable results, even for relatively small samples of alternatives. The paper finishes with a synthesis and an analysis of the impact, limitations and potential extensions of this research.

[1]  Michel Bierlaire,et al.  BIOGEME: a free package for the estimation of discrete choice models , 2003 .

[2]  Shlomo Bekhor,et al.  Link-Nested Logit Model of Route Choice: Overcoming Route Overlapping Problem , 1998 .

[3]  G. Imbens,et al.  Combining Micro and Macro Data in Microeconometric Models , 1994 .

[4]  M. Ben-Akiva,et al.  The demand for local telephone service: a fully discrete model of residential calling patterns and service choices , 1987 .

[5]  Eric R. Hansen,et al.  Industrial location choice in Sao Paulo, Brazil : A nested logit model , 1987 .

[6]  K. Small A Discrete Choice Model for Ordered Alternatives , 1987 .

[7]  A. Papola,et al.  A practically tractable expression of the covariances of the Cross-Nested Logit model , 2013 .

[8]  Mary Jo Kealy,et al.  Randomly Drawn Opportunity Sets in a Random Utility Model of Lake Recreation , 1992 .

[9]  José Manuel Viegas,et al.  Effects of Transportation Accessibility on Residential Property Values , 2009 .

[10]  Cristián Angelo Guevara-Cue Endogeneity and Sampling of Alternatives in Spatial Choice Models , 2010 .

[11]  Moshe Ben-Akiva,et al.  Sampling of alternatives in Logit Mixture models , 2013 .

[12]  Liang-Shyong Duann,et al.  THE ESTIMATION OF DISCRETE CHOICE MODELS WITH LARGE CHOICE SET , 2005 .

[13]  M. Bierlaire,et al.  The estimation of generalized extreme value models from choice-based samples , 2008 .

[14]  Barry L. Nelson,et al.  Efficient Estimation of Nested Logit Models Using Choice-Based Samples , 2005 .

[15]  Joan L. Walker Extended discrete choice models : integrated framework, flexible error structures, and latent variables , 2001 .

[16]  Charles F. Manski,et al.  Alternative Estimators and Sample Designs for Discrete Choice Analysis , 1981 .

[17]  Adam Domanski,et al.  Estimating Mixed Logit Recreation Demand Models With Large Choice Sets , 2009 .

[18]  José Manuel Viegas,et al.  Assessment of Residential Location Satisfaction in the Lisbon Metropolitan Area , 2010 .

[19]  A. Papola Some development on the cross-nested logit model , 2004 .

[20]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[21]  Bronwyn H Hall,et al.  Estimation and Inference in Nonlinear Structural Models , 1974 .

[22]  M. Bierlaire,et al.  Sampling of Alternatives for Route Choice Modeling , 2009 .

[23]  Chandra R. Bhat,et al.  Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions , 2011 .

[24]  J. Hausman Specification tests in econometrics , 1978 .

[25]  H. Williams On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit , 1977 .

[26]  Steven R. Lerman,et al.  The Estimation of Choice Probabilities from Choice Based Samples , 1977 .

[27]  J. Heckman Dummy Endogenous Variables in a Simultaneous Equation System , 1977 .

[28]  Moshe Ben-Akiva,et al.  FORECASTING URBAN TRAVEL DEMAND FOR QUICK POLICY ANALYSIS WITH DISAGGREGATE CHOICE MODELS: A MONTE CARLO SIMULATION APPROACH , 1979 .

[29]  Chandra R. Bhat,et al.  Numerical Analysis of Effect of Sampling of Alternatives in Discrete Choice Models , 2004 .

[30]  Michael Angelo,et al.  MODELING RESIDENTIAL LOCATION CHOICE, WORKPLACE LOCATION CHOICE AND MODE CHOICE OF TWO-WORKER HOUSEHOLDS IN METRO MANILA , 2005 .

[31]  Wei-Chun Tseng,et al.  Some Preliminary Evidence on Sampling of Alternatives with the Random Parameters Logit , 1999, Marine Resource Economics.

[32]  M. Ben-Akiva,et al.  Endogeneity in Residential Location Choice Models , 2006 .

[33]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[34]  Lewis D. Hopkins Planning support systems for cities and regions , 2011, Int. J. Geogr. Inf. Sci..

[35]  Moshe Ben-Akiva,et al.  STRUCTURE OF PASSENGER TRAVEL DEMAND MODELS , 1974 .

[36]  Daniel McFadden,et al.  Modelling the Choice of Residential Location , 1977 .

[37]  Cristian Angelo Guevara,et al.  Change of Scale and Forecasting with the Control-Function Method in Logit Models , 2011, Transp. Sci..

[38]  Thomas Brox,et al.  Maximum Likelihood Estimation , 2019, Time Series Analysis.

[39]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[40]  Anders Karlström,et al.  A link based network route choice model with unrestricted choice set , 2013 .

[41]  Frank S. Koppelman,et al.  Representing the differences between female and male commute behavior in residential location choice models , 2001 .

[42]  H. Williams,et al.  Behavioural theories of dispersion and the mis-specification of travel demand models☆ , 1982 .

[43]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[44]  John Rust,et al.  A nested logit model of automobile holdings for one vehicle households , 1985 .

[45]  Laurie A. Garrow,et al.  Generation of synthetic datasets for discrete choice analysis , 2010 .

[46]  Paul Waddell,et al.  Residential mobility and location choice: a nested logit model with sampling of alternatives , 2010 .

[47]  K. Train Discrete Choice Methods with Simulation , 2003 .

[48]  Michel Bierlaire,et al.  A theoretical analysis of the cross-nested logit model , 2006, Ann. Oper. Res..

[49]  Tien Mai,et al.  A nested recursive logit model for route choice analysis , 2015 .