A joint convex penalty for inverse covariance matrix estimation

The paper proposes a joint convex penalty for estimating the Gaussian inverse covariance matrix. A proximal gradient method is developed to solve the resulting optimization problem with more than one penalty constraints. The analysis shows that imposing a single constraint is not enough and the estimator can be improved by a trade-off between two convex penalties. The developed framework can be extended to solve wide arrays of constrained convex optimization problems. A simulation study is carried out to compare the performance of the proposed method to graphical lasso and the SPICE estimate of the inverse covariance matrix.

[1]  Dimitri P. Bertsekas,et al.  Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey , 2015, ArXiv.

[2]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[3]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[4]  Alexandre d'Aspremont,et al.  Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .

[5]  Min Xu,et al.  High-dimensional Covariance Estimation Based On Gaussian Graphical Models , 2010, J. Mach. Learn. Res..

[6]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[7]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[8]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[9]  Yo Sheena,et al.  Estimation of the multivariate normal covariance matrix under some restrictions , 2003 .

[10]  Arian Maleki,et al.  Iterative Thresholding Algorithm for Sparse Inverse Covariance Estimation , 2012, NIPS.

[11]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[12]  Vwani P. Roychowdhury,et al.  Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..

[13]  Francis R. Bach,et al.  Consistency of trace norm minimization , 2007, J. Mach. Learn. Res..

[14]  Julien Mairal,et al.  Convex optimization with sparsity-inducing norms , 2011 .

[15]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[16]  Ming Yuan,et al.  High Dimensional Inverse Covariance Matrix Estimation via Linear Programming , 2010, J. Mach. Learn. Res..

[17]  Massimiliano Pontil,et al.  Convex multi-task feature learning , 2008, Machine Learning.

[18]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[19]  M. Yuan,et al.  Model selection and estimation in the Gaussian graphical model , 2007 .

[20]  Kazuyuki Aihara,et al.  Classifying matrices with a spectral regularization , 2007, ICML '07.

[21]  Martin J. Wainwright,et al.  High-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression , 2006, NIPS.

[22]  F. Bach,et al.  Optimization with Sparsity-Inducing Penalties (Foundations and Trends(R) in Machine Learning) , 2011 .

[23]  Larry A. Wasserman,et al.  Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models , 2010, NIPS.

[24]  Seung-Jean Kim,et al.  Condition‐number‐regularized covariance estimation , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.