Reproduzierbarkeit in der elektroorganischen Synthese – Mythen und Missverständnisse

[1]  S. Waldvogel,et al.  Sustainable electroorganic synthesis of lignin-derived dicarboxylic acids , 2020 .

[2]  S. Waldvogel,et al.  Electrosynthesis 2.0 in 1,1,1,3,3,3‐Hexafluoroisopropanol/Amine Mixtures , 2020 .

[3]  U. Karst,et al.  Mass‐Spectrometric Imaging of Electrode Surfaces—a View on Electrochemical Side Reactions , 2020, Angewandte Chemie.

[4]  A. Lennox,et al.  Electrode Materials in Modern Organic Electrochemistry , 2020, Angewandte Chemie.

[5]  S. Waldvogel,et al.  Does electrifying organic synthesis pay off? The energy efficiency of electro-organic conversions , 2020, MRS Energy & Sustainability.

[6]  R. Franke,et al.  Supporting-Electrolyte-Free and Scalable Flow Process for the Electrochemical Synthesis of 3,3′,5,5′-Tetramethyl-2,2′-biphenol , 2020 .

[7]  S. Waldvogel,et al.  Metal-free electrochemical fluorodecarboxylation of aryloxyacetic acids to fluoromethyl aryl ethers† , 2020, Chemical science.

[8]  S. Waldvogel,et al.  Electro-organic synthesis – a 21st century technique , 2020, Chemical science.

[9]  A. Lei,et al.  Electrochemical Oxidative [4+2] Annulation for the π-Extension of Unfunctionalized Hetero-biaryl Compounds. , 2020, Angewandte Chemie.

[10]  K. Rauch,et al.  Cobaltaelectro-catalyzed C–H activation for resource-economical molecular syntheses , 2020, Nature Protocols.

[11]  W. Schade,et al.  About the selectivity and reactivity of active nickel electrodes in C–C coupling reactions , 2020, RSC advances.

[12]  D. Schollmeyer,et al.  Electrochemical C−H Functionalization of (Hetero)Arenes—Optimized by DoE , 2020, Chemistry.

[13]  Jianhua Zhou,et al.  Tunable Electrochemical C-N versus N-N Bond Formation of Nitrogen-Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. , 2020, Angewandte Chemie.

[14]  S. Waldvogel,et al.  Outstandingly robust anodic dehydrogenative aniline coupling reaction , 2020 .

[15]  L. Ackermann,et al.  Catalyst-free, direct electrochemical synthesis of annulated medium-sized lactams through C–C bond cleavage , 2020 .

[16]  Aiwen Lei,et al.  Is electrosynthesis always green and advantageous compared to traditional methods? , 2020, Nature Communications.

[17]  S. Waldvogel,et al.  Large, Highly Modular Narrow-Gap Electrolytic Flow Cell and Application in Dehydrogenative Cross-Coupling of Phenols , 2019 .

[18]  R. Franke,et al.  A Decade of Electrochemical Dehydrogenative C,C-Coupling of Aryls. , 2019, Accounts of chemical research.

[19]  Cian Kingston,et al.  A Survival Guide for the "Electro-curious". , 2019, Accounts of chemical research.

[20]  M. Kärkäs,et al.  Organic Electrosynthesis: Applications in Complex Molecule Synthesis , 2019, ChemElectroChem.

[21]  David P. Hickey,et al.  A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms , 2019, Chemical science.

[22]  Yunfei Cai,et al.  Electrochemical and Scalable Dehydrogenative C(sp3 )-H Amination via Remote Hydrogen Atom Transfer in Batch and Continuous Flow. , 2019, Chemistry.

[23]  S. Waldvogel,et al.  Use of Boron‐Doped Diamond Electrodes in Electro‐Organic Synthesis , 2019, ChemElectroChem.

[24]  P. Baran,et al.  Electrochemical C(sp3)–H Fluorination , 2019, Synlett.

[25]  David P. Hickey,et al.  Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry , 2019, Science.

[26]  R. Francke,et al.  An Electrocatalytic Newman-Kwart-type Rearrangement. , 2018, Organic letters.

[27]  S. Waldvogel,et al.  Anodic Degradation of Lignin at Active Transition Metal-based Alloys and Performance-enhanced Anodes , 2018, ChemElectroChem.

[28]  M. Kärkäs Electrochemical strategies for C-H functionalization and C-N bond formation. , 2018, Chemical Society reviews.

[29]  C. Kampf,et al.  Electrochemical Arylation Reaction. , 2018, Chemical reviews.

[30]  S. Waldvogel,et al.  Direct electrochemical generation of organic carbonates by dehydrogenative coupling , 2018, Beilstein journal of organic chemistry.

[31]  Y. Qiu,et al.  Electrocatalytic C–H Activation , 2018, ACS Catalysis.

[32]  Siegfried R. Waldvogel,et al.  Moderne Aspekte der Elektrochemie zur Synthese hochwertiger organischer Produkte , 2018 .

[33]  Siegfried R. Waldvogel,et al.  Elektrifizierung der organischen Synthese , 2018 .

[34]  S. Waldvogel,et al.  Modern Electrochemical Aspects for the Synthesis of Value‐Added Organic Products , 2018, Angewandte Chemie.

[35]  Anton Wiebe,et al.  Electrifying Organic Synthesis , 2018, Angewandte Chemie.

[36]  Siegfried R. Waldvogel,et al.  Aktive Anode auf Molybdänbasis für dehydrierende Kupplungen , 2018 .

[37]  W. Schade,et al.  Active Molybdenum-Based Anode for Dehydrogenative Coupling Reactions. , 2018, Angewandte Chemie.

[38]  A. Lei,et al.  Electrochemical Oxidative Cross-coupling with Hydrogen Evolution: A Green and Sustainable Way for Bond Formation , 2018 .

[39]  Kelley J. Rountree,et al.  A Practical Beginner’s Guide to Cyclic Voltammetry , 2017 .

[40]  P. Baran,et al.  Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. , 2017, Chemical reviews.

[41]  R. Franke,et al.  Unexpected high robustness of electrochemical cross-coupling for a broad range of current density , 2017, Science Advances.

[42]  S. Waldvogel,et al.  Twofold Electrochemical Amination of Naphthalene and Related Arenes , 2017 .

[43]  D. Schollmeyer,et al.  Insights into the Mechanism of Anodic N-N Bond Formation by Dehydrogenative Coupling. , 2017, Journal of the American Chemical Society.

[44]  Phil S Baran,et al.  Scalable, Electrochemical Oxidation of Unactivated C–H Bonds , 2017, Journal of the American Chemical Society.

[45]  S. Waldvogel,et al.  Highly Modular Flow Cell for Electroorganic Synthesis , 2017 .

[46]  D. Schollmeyer,et al.  Electrochemical synthesis of benzoxazoles from anilides - a new approach to employ amidyl radical intermediates. , 2017, Chemical communications.

[47]  D. Wong,et al.  Recent strategies to minimise fouling in electrochemical detection systems , 2016 .

[48]  Ke Chen,et al.  Scalable and Sustainable Electrochemical Allylic C–H Oxidation , 2016, Nature.

[49]  Siegfried R. Waldvogel,et al.  Development and Scale-Up of the Electrochemical Dehalogenation for the Synthesis of a Key Intermediate for NS5A Inhibitors , 2015 .

[50]  Jeffrey Aubé,et al.  Practical Electrochemical Anodic Oxidation of Polycyclic Lactams for Late Stage Functionalization. , 2015, Angewandte Chemie.

[51]  S. Waldvogel,et al.  Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption , 2015, Beilstein journal of organic chemistry.

[52]  Phil S. Baran,et al.  Total Synthesis of Dixiamycin B by Electrochemical Oxidation , 2014, Journal of the American Chemical Society.

[53]  S. Waldvogel,et al.  Boron-doped diamond electrodes for electroorganic chemistry. , 2012, Topics in current chemistry.

[54]  Siegfried R. Waldvogel,et al.  Diversitäts‐orientierte Synthese von polycyclischen Gerüsten durch Umsetzung eines von 2,4‐Dimethylphenol abgeleiteten anodischen Zwischenproduktes , 2011 .

[55]  S. Waldvogel,et al.  Diversity-oriented synthesis of polycyclic scaffolds by modification of an anodic product derived from 2,4-dimethylphenol. , 2011, Angewandte Chemie.

[56]  Mithlesh Kumar,et al.  Direct determination of metallic impurities in graphite by EDXRF. , 2010, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[57]  D. Abernethy,et al.  Metal Impurities in Food and Drugs , 2010, Pharmaceutical Research.

[58]  Paul Anastas,et al.  Green chemistry: principles and practice. , 2010, Chemical Society reviews.

[59]  S. Ferro,et al.  Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. , 2006, Chemical Society reviews.

[60]  S. Waldvogel,et al.  Unexpected Highly Chemoselective Anodic ortho‐Coupling Reaction of2,4‐Dimethylphenol on Boron‐Doped Diamond Electrodes , 2006 .

[61]  Christina E. Rommel,et al.  Novel template-directed anodic phenol-coupling reaction. , 2006, Chemistry.

[62]  J. Oni,et al.  Solvent-free electrodeposition of polypyrrole as a base for the preparation of carbonised platinum microelectrodes , 2005 .

[63]  Siegfried R. Waldvogel,et al.  Synthesis of Rigid Receptors Based on Triphenylene Ketals , 2005 .

[64]  K. Zaghib,et al.  Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal , 2003 .

[65]  Joseph Wang,et al.  Analytical Electochemistry: Wang/Electrochemistry 2E E-Bk , 2002 .

[66]  S. Waldvogel,et al.  Improved protocol for the synthesis of functionalized triphenylene ketals , 2000 .

[67]  Kevin D. Moeller,et al.  Anodic electrochemistry and the use of a 6-volt lantern battery: A simple method for attempting electrochemically based synthetic transformations , 1996 .

[68]  Y. Koshino,et al.  Determination of trace metal impurities in graphite powders by acid pressure decomposition and inductively coupled plasma atomic emission spectrometry , 1993 .