Grafting of biocompatible polymer for longevity of artificial hip joints

Aseptic loosening induced by wear particles from the polyethylene liner is likely the most common cause of long-term total hip arthroplasty failure. We developed a novel hip polyethylene liner with the surface graft of a biocompatible phospholipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), and previously reported the grafting decreased the short-term production of wear particles and the subsequent bone resorptive responses. For clinical application, we investigated the stability of the 2-methacryloyloxyethyl phosphorylcholine grafting during sterilization and the wear resistance of the sterilized liner during longer loading comparable to clinical usage. Radiographic spectroscopy confirmed the stability of the 2-methacryloyloxyethyl phosphorylcholine polymer on the liner surface after the gamma irradiation. We used a hip wear simulator up to 1 x 10 7 cycles to test sterilized cross-linked polyethylene liners with and without 2-methacryloyloxyethyl phosphorylcholine grafting. The 2-methacryloyloxyethyl phosphorylcholine grafting markedly decreased the friction, the production of wear particles, and the wear of the liner surface. These data suggest a marked improvement in the wear resistance of the polyethylene liner by the 2-methacryloyloxyethyl phosphorylcholine grafting for clinically relevant periods after sterilization, indicating 2-methacryloyloxyethyl phosphorylcholine grafting is a promising technology for extending longevity of artificial hips.