Thermal regimes at the snow–ground interface and their implications for permafrost investigation

Abstract Snow cover is a critical factor determining the presence or absence of permafrost in mid-latitude high mountain regions. This paper discusses the relation between temporal changes in temperature at the snow–ground interface and permafrost distribution. Four fundamental types of temporal change in winter ground surface temperature (GST) are identified: (1) nearly constant at 0 °C, (2) short-term fluctuation, (3) gradual increase without short-term fluctuation, and (4) gradual decrease without short-term fluctuation. The latter three are favorable for permafrost growth, and result from direct cold penetration throughout winter, ground cooling before the onset of seasonal snow cover and cold air funneling and concentrating in voids between coarse blocks, respectively. The fourth thermal effect predominantly contributes to growth of permafrost, and thus should be included in the bottom temperature of snow cover (BTS) concept which involves mainly the third effect. Monitoring GST over a winter provides a new tool for investigating the distribution of permafrost, as well as information on the thermal regimes that control permafrost development.

[1]  L. King,et al.  Prospecting and mapping of mountain permafrost and associated phenomena , 1992 .

[2]  Christian Hauck,et al.  New geophysical methods of investigating the nature and distribution of mountain permafrost with special reference to radiometry techniques , 2001 .

[3]  Martin Hoelzle,et al.  Permafrost occurrence from BTS measurements and climatic parameters in the eastern Swiss Alps , 1992 .

[4]  Miguel Ramos,et al.  Location of permafrost in marginal regions: Corral del Veleta, Sierra Nevada, Spain , 2001 .

[5]  W. Haeberli Die Basis-Temperatur der winterlichen Schneedecke als moglicher Indikator fur die Verbreitung von Permafrost in den Alpen , 1973 .

[6]  Y. Ono,et al.  GLACIAL AND PERIGLACIAL MORPHOGENETIC ENVIRONMENTS AROUND THE HIDAKA RANGE IN THE WÜRM GLACIAL AGE , 1975 .

[7]  K. Isaksen,et al.  Comparison of BTS and Landsat TM data from Jotunheimen, southern Norway , 1999 .

[8]  L. King Permafrost in Skandinavien : Untersuchungsergebnisse aus Lappland, Jotunheimen und Dovre/Rondane , 1984 .

[9]  Bernd Etzelmüller,et al.  Surface energy fluxes and distribution models of permafrost in European mountain areas: an overview of current developments , 2001 .

[10]  W. Haeberli On the characteristics and possible origins of ice in rock glacier permafrost. , 1996 .

[11]  D. Barsch Rockglaciers: Indicators for the Present and Former Geoecology in High Mountain Environments , 1996 .

[12]  W. Haeberli,et al.  Construction, environmental problems and natural hazards in periglacial mountain belts , 1992 .

[13]  N. Matsuoka,et al.  Rockfall activity from an alpine cliff during thawing periods , 1999 .

[14]  Martin Hoelzle,et al.  Miniature temperature dataloggers for mapping and monitoring of permafrost in high mountain areas: first experience from the Swiss Alps , 1999 .

[15]  M. Ishikawa,et al.  Mountain permafrost distribution based on BTS measurements and DC resistivity soundings in the Daisetsu Mountains, Hokkaido, Japan , 2000 .

[16]  M. Smith Microclimatic Influences on Ground Temperatures and Permafrost Distribution, Mackenzie Delta, Northwest Territories , 1975 .

[17]  M. Fukuda,et al.  Permafrost at Mt. Taisetsu, Hokkaido and its Climatic Environment , 1974 .

[18]  W. Haeberli,et al.  PROCESSES OF SNOW/PERMAFROST-INTERACTIONS AT A HIGH- MOUNTAIN SITE, MURTéL/CORVATSCH, EASTERN SWISS ALPS , 1998 .

[19]  P. Johnson,et al.  Electrical Resistivity Measurements on the Rock Glaciers of Grizzly Creek, St Elias Mountains, Yukon , 1997 .

[20]  Knut Stamnes,et al.  Influence of the depth hoar layer of the seasonal snow cover on the ground thermal regime , 1996 .

[21]  L. King Zonation and Ecology of High Mountain Permafrost in Scandinavia , 1986 .

[22]  S. Harris Climatic Relationships of Permafrost Zones in Areas of Low Winter Snow-Cover , 1981 .

[23]  O. Koefoed,et al.  Geosounding Principles: Resistivity Sounding Measurements , 1980 .

[24]  H. Kienholz,et al.  Permafrost investigation in the Schilthorn Massif, Bernese Alps, Switzerland. , 2000 .

[25]  L. E. Goodrich,et al.  The influence of snow cover on the ground thermal regime , 1982 .

[26]  M. Ishikawa,et al.  Thermal regime of sporadic permafrost in a block slope on Mt. Nishi-Nupukaushinupuri, Hokkaido Island, Northern Japan , 2003 .

[27]  G. Patzelt,et al.  Permafrostkartierung im Gebiet der Hochebenkar-Blockgletscher, Obergurgl, Ötztaler Alpen , 1982 .

[28]  S. Harris,et al.  Thermal regimes beneath coarse blocky materials , 1998 .

[29]  A. Dupis,et al.  Geosounding Principles, 1. Resistivity Sounding Measurements: O. Koefoed. Methods in Geochemistry and Geophysics, 14A. Elsevier, Amsterdam, 1979, xiv + 276 pp. + 11 pp. encl., Dfl. 130.00., approx. US $ 66.50, ISBN 0-444-41704-4 , 1980 .

[30]  D. Fabre,et al.  The distribution of permafrost in rock glaciers of the southern Alps (France) , 1990 .

[31]  J. L. Sollid,et al.  Rock glaciers on Prins Karls Forland, Svalbard. I: internal structure, flow velocity and morphology , 1998 .

[32]  F. Keller Interaktionen zwischen Schnee und Permafrost , 1993 .

[33]  R. Barry,et al.  Numerical simulations of the influence of the seasonal snow cover on the occurrence of permafrost at high latitudes , 2001 .

[34]  S. Harris The Permafrost Environment , 1986 .

[35]  M. Hoelzle,et al.  Permafrost mapping and prospecting in southern Norway , 1996 .

[36]  C. Kneisel OCCURRENCE OF SURFACE ICE AND GROUND ICE/PERMAFROST IN RECENTLY DEGLACIATED GLACIER FOREFIELDS, ST. MORITZ AREA, EASTERN SWISS ALPS , 1998 .

[37]  W. Haeberli,et al.  Creep of mountain permafrost:internal structure and flow of Alpine rock glaciers. , 1985 .

[38]  T. Sone,et al.  Climate in Mt. Daisetsu, as Viewed from the Year Round Meteorological Observation at Hakuun Hut in 1985 , 1988 .