Evolution of eukaryotic genome architecture: Insights from the study of a rapidly evolving metazoan, Oikopleura dioica

Recent sequencing of the metazoan Oikopleura dioica genome has provided important insights, which challenges the current understanding of eukaryotic genome evolution. Many genomic features of O. dioica show deviation from the commonly observed trends in other eukaryotic genomes. For instance, O. dioica has a rapidly evolving, highly compact genome with a divergent intron‐exon organization. Additionally, O. dioica lacks the minor spliceosome and key DNA repair pathway genes. Even with a compact genome, O. dioica contains tandem repeats, comparable to other eukaryotes, and shows lineage‐specific expansion of certain protein domains. Here, we review its genomic features in the context of current knowledge, discuss implications for contemporary biology and identify areas for further research. Analysis of the O. dioica genome suggests that non‐adaptive forces such as elevated mutation rates might influence the evolution of genome architecture. The knowledge of unique genomic features and splicing mechanisms in O. dioica may be exploited for synthetic biology applications, such as generation of orthogonal splicing systems.

[1]  H. Le Hir,et al.  How introns influence and enhance eukaryotic gene expression. , 2003, Trends in biochemical sciences.

[2]  T. Samuelsson,et al.  Analysis of Gene Order Conservation in Eukaryotes Identifies Transcriptionally and Functionally Linked Genes , 2010, PloS one.

[3]  Hans Lehrach,et al.  Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica , 2004, Nature.

[4]  A. Simpson,et al.  Eukaryotic evolution: Early origin of canonical introns , 2002, Nature.

[5]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[6]  J. Chin,et al.  Modular approaches to expanding the functions of living matter , 2006, Nature chemical biology.

[7]  C. Slamovits,et al.  Causes and effects of nuclear genome reduction. , 2005, Current opinion in genetics & development.

[8]  Cyrus Chothia,et al.  Genomic and structural aspects of protein evolution. , 2009, The Biochemical journal.

[9]  Frédéric Delsuc,et al.  Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate , 2010, Science.

[10]  Pamela A Silver,et al.  Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. , 2009, Molecular bioSystems.

[11]  E. Koonin,et al.  The role of lineage-specific gene family expansion in the evolution of eukaryotes. , 2002, Genome research.

[12]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[13]  J. Mattick,et al.  Long non-coding RNAs: insights into functions , 2009, Nature Reviews Genetics.

[14]  S. Teichmann,et al.  The impact of genomic neighborhood on the evolution of human and chimpanzee transcriptome. , 2009, Genome research.

[15]  Tobias Mourier,et al.  Eukaryotic Intron Loss , 2003, Science.

[16]  Eugene V Koonin,et al.  Evolution of genome architecture. , 2009, The international journal of biochemistry & cell biology.

[17]  Elizabeth H C Bromley,et al.  Synthetic biology through biomolecular design and engineering. , 2008, Current opinion in structural biology.

[18]  L. Hood,et al.  Gene families: the taxonomy of protein paralogs and chimeras. , 1997, Science.

[19]  K. Howe,et al.  Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. , 2007, Genome research.

[20]  G Vergnaud,et al.  Minisatellites: mutability and genome architecture. , 2000, Genome research.

[21]  C. Pál,et al.  The evolutionary dynamics of eukaryotic gene order , 2004, Nature Reviews Genetics.

[22]  J. Rinn,et al.  Non-coding RNAs as regulators of embryogenesis , 2011, Nature Reviews Genetics.

[23]  E. Koonin,et al.  Three distinct modes of intron dynamics in the evolution of eukaryotes. , 2007, Genome research.

[24]  Duncan J. Smith,et al.  Insights into branch nucleophile positioning and activation from an orthogonal pre-mRNA splicing system in yeast. , 2009, Molecular cell.

[25]  Kui Lin,et al.  The excess of 5′ introns in eukaryotic genomes , 2005, Nucleic acids research.

[26]  Subhajyoti De,et al.  Genomic neighbourhood and the regulation of gene expression. , 2010, Current opinion in cell biology.

[27]  E. Thompson,et al.  Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica , 2009, Journal of plankton research.

[28]  Walter Gilbert,et al.  The evolution of spliceosomal introns: patterns, puzzles and progress , 2006, Nature Reviews Genetics.

[29]  G. Ast,et al.  Alternative splicing and evolution: diversification, exon definition and function , 2010, Nature Reviews Genetics.

[30]  N. Patron,et al.  A high frequency of overlapping gene expression in compacted eukaryotic genomes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Thomas Blumenthal,et al.  Caenorhabditis elegans operons: form and function , 2003, Nature Reviews Genetics.

[32]  Kuniaki Saito,et al.  Small RNA-mediated quiescence of transposable elements in animals. , 2010, Developmental cell.

[33]  Matthieu Legendre,et al.  Variable tandem repeats accelerate evolution of coding and regulatory sequences. , 2010, Annual review of genetics.

[34]  F. Delsuc,et al.  Tunicates and not cephalochordates are the closest living relatives of vertebrates , 2006, Nature.

[35]  Thomas Blumenthal,et al.  Operons in eukaryotes. , 2004, Briefings in functional genomics & proteomics.

[36]  L. Holland Developmental biology: A chordate with a difference , 2007, Nature.

[37]  Andrey V. Kajava,et al.  T-REKS: identification of Tandem REpeats in sequences with a K-meanS based algorithm , 2009, Bioinform..

[38]  F. Ayala,et al.  Origins and evolution of spliceosomal introns. , 2006, Annual review of genetics.

[39]  E. Thompson,et al.  Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. , 2008, Molecular biology and evolution.

[40]  Eugene V. Koonin,et al.  Introns and the origin of nucleus–cytosol compartmentalization , 2006, Nature.

[41]  A. Jacquier The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs , 2009, Nature Reviews Genetics.

[42]  R. Schnabel,et al.  Embryology of a planktonic tunicate reveals traces of sessility , 2008, Proceedings of the National Academy of Sciences.

[43]  M. Gelfand,et al.  Comparative genomics and evolution of alternative splicing: the pessimists' science. , 2007, Chemical reviews.

[44]  Peter A Carr,et al.  Genome engineering , 2009, Nature Biotechnology.

[45]  E. Koonin,et al.  Patterns of intron gain and conservation in eukaryotic genes , 2007, BMC Evolutionary Biology.

[46]  J. Chin,et al.  Synthesis of orthogonal transcription-translation networks , 2009, Proceedings of the National Academy of Sciences.

[47]  Paulo P. Amaral,et al.  RNA regulation of epigenetic processes , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  Lukasz Huminiecki,et al.  2R and remodeling of vertebrate signal transduction engine , 2010, BMC Biology.

[49]  Klaudia Walter,et al.  Highly Conserved Non-Coding Sequences Are Associated with Vertebrate Development , 2004, PLoS biology.

[50]  Boris Lenhard,et al.  Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes , 2004, BMC Genomics.

[51]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[52]  M. Mann,et al.  Molecular Patterning of the Oikoplastic Epithelium of the Larvacean Tunicate Oikopleura dioica * , 2001, The Journal of Biological Chemistry.

[53]  A. Perkins,et al.  Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. , 2009, Genome research.

[54]  J. Mattick,et al.  The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. , 2001, Molecular biology and evolution.

[55]  F. Crick,et al.  Selfish DNA: the ultimate parasite , 1980, Nature.

[56]  D. Niu,et al.  mRNA-mediated intron losses: evidence from extraordinarily large exons. , 2005, Molecular biology and evolution.

[57]  Zhen Xie,et al.  Rationally-designed logic integration of regulatory signals in mammalian cells , 2010, Nature nanotechnology.

[58]  E. Koonin,et al.  Remarkable Interkingdom Conservation of Intron Positions and Massive, Lineage-Specific Intron Loss and Gain in Eukaryotic Evolution , 2003, Current Biology.

[59]  J. Postlethwait,et al.  Development of a chordate anterior-posterior axis without classical retinoic acid signaling. , 2007, Developmental biology.

[60]  H. Lehrach,et al.  Hypervariable and Highly Divergent Intron–Exon Organizations in the Chordate Oikopleura dioica , 2004, Journal of Molecular Evolution.

[61]  H. Lehrach,et al.  Miniature genome in the marine chordate Oikopleura dioica. , 2001, Science.

[62]  James J. Collins,et al.  Next-Generation Synthetic Gene Networks , 2009, Nature Biotechnology.

[63]  Cyrus Chothia,et al.  SUPERFAMILY 1.75 including a domain-centric gene ontology method , 2010, Nucleic Acids Res..

[64]  J. Mattick The Genetic Signatures of Noncoding RNAs , 2009, PLoS genetics.

[65]  P. Bork,et al.  Vertebrate-Type Intron-Rich Genes in the Marine Annelid Platynereis dumerilii , 2005, Science.

[66]  C. Chothia,et al.  Evolution of the Protein Repertoire , 2003, Science.

[67]  M. Babu,et al.  Nanobiotechnology: Scaling up synthetic gene circuits. , 2010, Nature nanotechnology.

[68]  Y. Kohara,et al.  Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. , 2007, Genome research.

[69]  Martin J. Lercher,et al.  Clustering of housekeeping genes provides a unified model of gene order in the human genome , 2002, Nature Genetics.

[70]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.