NGL-2 Regulates Input-Specific Synapse Development in CA1 Pyramidal Neurons

[1]  Alexander J. Rivest,et al.  Entorhinal Cortex Layer III Input to the Hippocampus Is Crucial for Temporal Association Memory , 2011, Science.

[2]  L. Luo,et al.  Role of leucine-rich repeat proteins in the development and function of neural circuits. , 2011, Annual review of cell and developmental biology.

[3]  E. Jones,et al.  Structural basis for cell surface patterning through NetrinG–NGL interactions , 2011, The EMBO journal.

[4]  R. Nicoll,et al.  Functional dependence of neuroligin on a new non-PDZ intracellular domain , 2011, Nature Neuroscience.

[5]  Anirvan Ghosh,et al.  Regulation of synaptic stability by AMPA receptor reverse signaling , 2010, Proceedings of the National Academy of Sciences.

[6]  Raika Pancaroglu,et al.  LRRTMs and Neuroligins Bind Neurexins with a Differential Code to Cooperate in Glutamate Synapse Development , 2010, The Journal of Neuroscience.

[7]  Eunjoon Kim,et al.  Trans-synaptic Adhesions between Netrin-G Ligand-3 (NGL-3) and Receptor Tyrosine Phosphatases LAR, Protein-tyrosine Phosphatase δ (PTPδ), and PTPσ via Specific Domains Regulate Excitatory Synapse Formation* , 2010, The Journal of Biological Chemistry.

[8]  Thomas C. Südhof,et al.  LRRTM2 Functions as a Neurexin Ligand in Promoting Excitatory Synapse Formation , 2009, Neuron.

[9]  J. Yates,et al.  LRRTM2 Interacts with Neurexin1 and Regulates Excitatory Synapse Formation , 2009, Neuron.

[10]  Eunjoon Kim,et al.  The NGL family of leucine-rich repeat-containing synaptic adhesion molecules , 2009, Molecular and Cellular Neuroscience.

[11]  M. Sheng,et al.  Trans-synaptic adhesion between NGL-3 and LAR regulates the formation of excitatory synapses , 2009, Nature Neuroscience.

[12]  S. Strittmatter,et al.  An Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers , 2009, Neuron.

[13]  D. O'Leary,et al.  p75NTR Mediates Ephrin-A Reverse Signaling Required for Axon Repulsion and Mapping , 2008, Neuron.

[14]  N. Xu,et al.  Netrin‐G2 and netrin‐G2 ligand are both required for normal auditory responsiveness , 2008, Genes, brain, and behavior.

[15]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[16]  Susumu Tonegawa,et al.  Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning , 2008, Science.

[17]  M. Moser,et al.  Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex , 2008, Neuron.

[18]  Shigeyoshi Itohara,et al.  Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments , 2007, Neuroscience Research.

[19]  S. Siegelbaum,et al.  A Role for Synaptic Inputs at Distal Dendrites: Instructive Signals for Hippocampal Long-Term Plasticity , 2007, Neuron.

[20]  T. Deerinck,et al.  Regulation of spine morphology and spine density by NMDA receptor signaling in vivo , 2007, Proceedings of the National Academy of Sciences.

[21]  S. Itohara,et al.  Short communication Monoclonal antibodies discriminating netrin-G1 and netrin-G2 neuronal pathways , 2007 .

[22]  K. Hokamp,et al.  The extracellular Leucine-Rich Repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns , 2007, BMC Genomics.

[23]  Tarik F Haydar,et al.  Long-Term, Selective Gene Expression in Developing and Adult Hippocampal Pyramidal Neurons Using Focal In Utero Electroporation , 2007, The Journal of Neuroscience.

[24]  R. Huganir,et al.  Synapse-specific regulation of AMPA receptor function by PSD-95 , 2006, Proceedings of the National Academy of Sciences.

[25]  R. Weinberg,et al.  NGL family PSD-95–interacting adhesion molecules regulate excitatory synapse formation , 2006, Nature Neuroscience.

[26]  W. Denk,et al.  Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  E. Schuman,et al.  Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory , 2004, Nature.

[28]  A. Gurney,et al.  The netrin-G1 ligand NGL-1 promotes the outgrowth of thalamocortical axons , 2003, Nature Neuroscience.

[29]  Carlo Sala,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2 , 2003, Nature.

[30]  E. Schuman,et al.  Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons , 2002, Nature.

[31]  J. Sanes,et al.  Laminets: Laminin- and Netrin-Related Genes Expressed in Distinct Neuronal Subsets , 2002, Molecular and Cellular Neuroscience.

[32]  S. Itohara,et al.  Complementary expression and neurite outgrowth activity of netrin-G subfamily members , 2002, Mechanisms of Development.

[33]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[34]  M. Ruitenberg,et al.  Expression of the Gene Encoding the Chemorepellent Semaphorin III Is Induced in the Fibroblast Component of Neural Scar Tissue Formed Following Injuries of Adult But Not Neonatal CNS , 1999, Molecular and Cellular Neuroscience.

[35]  J. Fiala,et al.  Synaptogenesis Via Dendritic Filopodia in Developing Hippocampal Area CA1 , 1998, The Journal of Neuroscience.

[36]  K. I. Blum,et al.  Impaired Hippocampal Representation of Space in CA1-Specific NMDAR1 Knockout Mice , 1996, Cell.

[37]  S. Tonegawa,et al.  The Essential Role of Hippocampal CA1 NMDA Receptor–Dependent Synaptic Plasticity in Spatial Memory , 1996, Cell.

[38]  S. Nagata,et al.  pEF-BOS, a powerful mammalian expression vector. , 1990, Nucleic acids research.

[39]  M. Yeckel,et al.  Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Mario Roederer,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR 2 , 2022 .