Heavy ion irradiation and annealing of lead: atomistic simulations and experimental validation

[1]  J. Keinonen,et al.  Recoils, flows and explosions: surface damage mechanisms in metals and semiconductors during 50 eV–50 keV ion bombardment , 1999 .

[2]  N. Soneda,et al.  Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation , 1998 .

[3]  M. Caturla,et al.  Defect production in collision cascades in elemental semiconductors and fcc metals , 1998 .

[4]  Brian D. Wirth,et al.  A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels , 1997 .

[5]  D. Bacon,et al.  Defect production due to displacement cascades in metals as revealed by computer simulation , 1997 .

[6]  B. N. Singh,et al.  Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions , 1997 .

[7]  Patrick R. Taylor,et al.  Investigating the thermal-plasma processing of advanced materials , 1996 .

[8]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[9]  L. Mansur Theory and experimental background on dimensional changes in irradiated alloys , 1994 .

[10]  M. Jenkins Characterisation of radiation-damage microstructures by TEM , 1994 .

[11]  M. Jenkins,et al.  Experimental studies of cascade phenomena in metals , 1993 .

[12]  Rosato,et al.  Tight-binding potentials for transition metals and alloys. , 1993, Physical review. B, Condensed matter.

[13]  H. L. Heinisch,et al.  Defect production in simulated cascades: Cascade quenching and short-term annealing , 1983 .

[14]  H. Schroeder,et al.  Annealing experiments on pure lead after electron irradiation at 4.7 K and below 3 K , 1976 .