Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar

In this paper we present a description of a new multispectral airborne mapping light detection and ranging (lidar) along with performance results obtained from two years of data collection and test campaigns. The Titan multiwave lidar is manufactured by Teledyne Optech Inc. (Toronto, ON, Canada) and emits laser pulses in the 1550, 1064 and 532 nm wavelengths simultaneously through a single oscillating mirror scanner at pulse repetition frequencies (PRF) that range from 50 to 300 kHz per wavelength (max combined PRF of 900 kHz). The Titan system can perform simultaneous mapping in terrestrial and very shallow water environments and its multispectral capability enables new applications, such as the production of false color active imagery derived from the lidar return intensities and the automated classification of target and land covers. Field tests and mapping projects performed over the past two years demonstrate capabilities to classify five land covers in urban environments with an accuracy of 90%, map bathymetry under more than 15 m of water, and map thick vegetation canopies at sub-meter vertical resolutions. In addition to its multispectral and performance characteristics, the Titan system is designed with several redundancies and diversity schemes that have proven to be beneficial for both operations and the improvement of data quality.

[1]  D. Donoghue,et al.  Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .

[2]  Yi-Hsing Tseng,et al.  Airborne Dual-Wavelength LiDAR Data for Classifying Land Cover , 2014, Remote. Sens..

[3]  Yuwei Chen,et al.  Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source , 2010, Sensors.

[4]  Gregory W. Wornell,et al.  Source-channel diversity for parallel channels , 2004, IEEE Transactions on Information Theory.

[5]  Robert Nowak,et al.  Empirical Comparison of Full-Waveform Lidar Algorithms , 2011 .

[6]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[7]  Ayman F. Habib,et al.  Geometric Calibration and Radiometric Correction of LiDAR Data and Their Impact on the Quality of Derived Products , 2011, Sensors.

[8]  C. Hopkinson The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution , 2007 .

[9]  Ahmed El-Rabbany,et al.  AIRBORNE MULTISPECTRAL LIDAR DATA FOR LAND-COVER CLASSIFICATION AND LAND/WATER MAPPING USING DIFFERENT SPECTRAL INDEXES , 2016 .

[10]  Nicholas Wilson,et al.  A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration , 2015, Sensors.

[11]  Zhigang Pan,et al.  Performance Assessment of High Resolution Airborne Full Waveform LiDAR for Shallow River Bathymetry , 2015, Remote. Sens..

[12]  William E. Carter,et al.  Optimizing ground return detection through forest canopies with small footprint airborne mapping LiDAR , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[13]  Norbert Pfeifer,et al.  RADIOMETRIC CALIBRATION OF MULTI-WAVELENGTH AIRBORNE LASER SCANNING DATA , 2012 .

[14]  C. Hopkinson,et al.  A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta , 2015 .

[15]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .

[16]  William E. Carter,et al.  Now You See It... Now You Don't: Understanding Airborne Mapping LiDAR Collection and Data Product Generation for Archaeological Research in Mesoamerica , 2014, Remote. Sens..

[17]  Peter Tian-Yuan Shih,et al.  A Study on Factors Affecting Airborne LiDAR Penetration , 2015 .

[18]  Hans Karl Heidemann,et al.  Lidar base specification version 1.0 , 2012 .

[19]  Tristan Cossio,et al.  Predicting Small Target Detection Performance of Low-SNR Airborne Lidar , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[20]  Ana Paula Kersting,et al.  Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction , 2012 .

[21]  Wenkai Li,et al.  Delineating Individual Trees from Lidar Data: A Comparison of Vector- and Raster-based Segmentation Approaches , 2013, Remote. Sens..

[22]  Juha Hyyppä,et al.  Radiometric Calibration of LIDAR Intensity With Commercially Available Reference Targets , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[23]  William Eugene Carter,et al.  Geodetic imaging with airborne LiDAR: the Earth's surface revealed , 2013, Reports on progress in physics. Physical Society.

[24]  R. Roth,et al.  PRACTICAL APPLICATION OF MULTIPLE PULSE IN AIR ( MPIA ) LIDAR IN LARGE-AREA SURVEYS , 2008 .

[25]  Arko Lucieer,et al.  Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[26]  John E. Anderson,et al.  Lidar flecks: modeling the influence of canopy type on tactical foliage penetration by airborne, active sensor platforms , 2012, Defense, Security, and Sensing.

[27]  William E. Carter,et al.  Early Results of Simultaneous Terrain and Shallow Water Bathymetry Mapping Using a Single-Wavelength Airborne LiDAR Sensor , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[28]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[29]  Chris Hopkinson The Influence of Lidar Acquisition Settings on Canopy Penetration and Laser Pulse Return Characteristics , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[30]  C. Hopkinson,et al.  Testing LiDAR models of fractional cover across multiple forest ecozones , 2009 .

[31]  Shuhab D. Khan,et al.  Application of multispectral LiDAR to automated virtual outcrop geology , 2014 .

[32]  L. Vierling,et al.  Lidar: shedding new light on habitat characterization and modeling , 2008 .

[33]  William Eugene Carter,et al.  Multicolor Terrain Mapping Documents Critical Environments , 2016 .

[34]  P. Axelsson DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .

[35]  J. Brasington,et al.  Object-based land cover classification using airborne LiDAR , 2008 .

[36]  Martin Pfennigbauer,et al.  MULTI-WAVELENGTH AIRBORNE LASER SCANNING FOR ARCHAEOLOGICAL PROSPECTION , 2013 .

[37]  Gong Wei,et al.  Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance , 2012 .

[38]  Jyrki T. J. Penttinen The Telecommunications Handbook: Engineering Guidelines for Fixed, Mobile and Satellite Systems , 2015 .

[39]  Joseph R. Lakowicz,et al.  Principles of Fluorescence Spectroscopy, Third Edition , 2008 .

[40]  Ximing Ren,et al.  Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Cheng Wang,et al.  Integrating LiDAR Intensity and Elevation Data for Terrain Characterization in a Forested Area , 2009, IEEE Geoscience and Remote Sensing Letters.

[42]  R. W. Austin,et al.  The Index of Refraction of Seawater , 1976 .

[43]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[44]  C. Glennie Rigorous 3D error analysis of kinematic scanning LIDAR systems , 2007 .

[45]  K. Clint Slatton,et al.  Shoreline Based Feature Extraction and Optimal Feature Selection for Segmenting Airborne LiDAR Intensity Images , 2007, 2007 IEEE International Conference on Image Processing.

[46]  V. Feigels,et al.  Lasers for lidar bathymetry and oceanographic research: choice criteria , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[47]  Michael S. Renslow Manual of Airborne Topographic Lidar , 2013 .

[48]  Laura Chasmer,et al.  Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar , 2006 .

[49]  Christopher W. Stevens,et al.  High‐Resolution Mapping of Wet Terrain within Discontinuous Permafrost using LiDAR Intensity , 2012 .

[50]  William E. Carter,et al.  Comparison of synthetic images generated from LiDAR intensity and passive hyperspectral imagery , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[51]  Laura Chasmer,et al.  USING DISCRETE LASER PULSE RETURN INTENSITY TO MODEL CANOPY TRANSMITTANCE , 2007 .

[52]  Timothy J. Malthus,et al.  A Multispectral Canopy LiDAR Demonstrator Project , 2011, IEEE Geoscience and Remote Sensing Letters.

[53]  Zhigang Pan,et al.  Evaluating the capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring channel morphology in two distinct river environments , 2016 .

[54]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[55]  Uwe Soergel,et al.  Integration of intensity information and echo distribution in the filtering process of LIDAR data in vegetated areas , 2008 .

[56]  N. Pfeifer,et al.  Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .

[57]  K. S. Baker,et al.  Quasi-Inherent Characteristics Of The Diffuse Attenuation Coefficient For Irradiance , 1980, Other Conferences.

[58]  Laura Chasmer,et al.  Multisensor and Multispectral LiDAR Characterization and Classification of a Forest Environment , 2016 .

[59]  K. C. Slatton,et al.  Airborne Laser Swath Mapping: Achieving the resolution and accuracy required for geosurficial research , 2007 .

[60]  Qian Du,et al.  Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.