Effect of the addition of Cu on irradiation induced defects and hardening in Zr-Nb alloys

[1]  Q. Dong,et al.  Irradiation damage and hardening in pure Zr and Zr-Nb alloys at 573 K from self-ion irradiation , 2019, Materials & Design.

[2]  M. Daymond,et al.  Orientation dependent evolution of plasticity of irradiated Zr-2.5Nb pressure tube alloy studied by nanoindentation and finite element modeling , 2018, Journal of Nuclear Materials.

[3]  M. Preuss,et al.  The Effect of Iron on Dislocation Evolution in Model and Commercial Zirconium Alloys , 2018 .

[4]  Y. F. Li,et al.  Tensile properties and microstructure of Zr–1.8Nb alloy subjected to 140-MeV C4+ ion irradiation , 2017 .

[5]  Q. Dong,et al.  Precipitate Stability in a Zr–2.5Nb–0.5Cu Alloy under Heavy Ion Irradiation , 2017 .

[6]  M. Preuss,et al.  The effect of matrix chemistry on dislocation evolution in an irradiated Zr alloy , 2017 .

[7]  M. Daymond,et al.  Effect of heavy ion irradiation on thermodynamically equilibrium Zr-Excel alloy , 2017 .

[8]  I. M. Robertson,et al.  Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys , 2016, Nature Communications.

[9]  Q. Dong,et al.  Study of microstructure and precipitates of a Zr-2.5Nb-0.5Cu CANDU spacer material , 2016 .

[10]  M. Okuniewski,et al.  Neutron irradiation effects in Fe and Fe-Cr at 300 °C , 2016 .

[11]  Q. Liu,et al.  Microstructural and textural evolution of commercially pure Zr sheet rolled at room and liquid nitrogen temperatures , 2015 .

[12]  M. Daymond,et al.  Contribution on the phase equilibria in Zr–Nb–Fe system , 2015 .

[13]  P. Edmondson,et al.  Characterisation of radiation damage in W and W-based alloys from 2 MeV self-ion near-bulk implantations , 2015 .

[14]  M. Daymond,et al.  Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. II. In situ transmission electron microscopy study of deformation mechanism change of a Zr-2.5Nb alloy upon heavy ion irradiation , 2015 .

[15]  M. Thuvander,et al.  Redistribution of alloying elements in Zircaloy-2 after in-reactor exposure , 2014 .

[16]  S. Haigh,et al.  Iron redistribution in a zirconium alloy after neutron and proton irradiation studied by energy-dispersive X-ray spectroscopy (EDX) using an aberration-corrected (scanning) transmission electron microscope , 2014 .

[17]  E. Wimmer,et al.  Effect of alloying elements on the properties of Zr and the Zr–H system , 2014 .

[18]  Donghua Xu,et al.  Study of defect evolution by TEM with in situ ion irradiation and coordinated modeling , 2012 .

[19]  T. Kameyama,et al.  Observation of c-component dislocation structures formed in pure Zr and Zr-base alloy by self-ion accelerator irradiation , 2012 .

[20]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[21]  William A. Curtin,et al.  Scaling of Dislocation Strengthening by Multiple Obstacle Types , 2010 .

[22]  M. Griffiths,et al.  The transformation behaviour of the β-phase in Zr–2.5Nb pressure tubes , 2008 .

[23]  R. A. Holt In-reactor deformation of cold-worked Zr–2.5Nb pressure tubes , 2008 .

[24]  Gary S. Was,et al.  Fundamentals of Radiation Materials Science: Metals and Alloys , 2007 .

[25]  Gary S. Was,et al.  The relationship between hardness and yield stress in irradiated austenitic and ferritic steels , 2005 .

[26]  Steven J. Zinkle,et al.  Observation and analysis of defect cluster production and interactions with dislocations , 2004 .

[27]  T. Byun,et al.  Irradiation hardening behavior of polycrystalline metals after low temperature irradiation , 2004 .

[28]  B. Anczykowski,et al.  Double strengthening of copper by dissolved gold-atoms and by incoherent SiO2-particles: how do the two strengthening contributions superimpose? , 2000 .

[29]  Y. Carlan,et al.  Influence of Iron in the Nucleation of ⟨c⟩ Component Dislocation Loops in Irradiated Zircaloy-4 , 1996 .

[30]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[31]  S. Banerjee,et al.  Metastability of the β-phase in Zr-rich Zr-Nb alloys , 1995 .

[32]  G. Weatherly,et al.  The distribution of Nb and Fe in a Zr-2.5 wt% Nb alloy, before and after irradiation , 1995 .

[33]  R. J. Schultz,et al.  The solid solubility of Fe in α-Zr: A secondary ion mass spectrometry study , 1994 .

[34]  M. Griffiths Evolution of microstructure in hcp metals during irradiation , 1993 .

[35]  M. Griffiths,et al.  HVEM study of the effects of alloying elements and impurities on radiation damage in Zr-alloys , 1993 .

[36]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[37]  R. A. Holt,et al.  Fe-enhancement of self-diffusion in α-Zr , 1991 .

[38]  G. M. Hood Point defect diffusion in α-Zr , 1988 .

[39]  M. Griffiths,et al.  Phase instability, decomposition and redistribution of intermetallic precipitates in Zircaloy-2 and -4 during neutron irradiation , 1987 .

[40]  D. Northwood The development and applications of zirconium alloys , 1985 .

[41]  H. Kayano,et al.  The inhomogeneous deformation behaviour of neutron irradiated Zircaloy-2 , 1980 .

[42]  S. Banerjee,et al.  Precipitation in zirconium-niobium martensites , 1976 .

[43]  R. J. Schultz,et al.  Copper diffusion in single-crystal α − Z r , 1975 .

[44]  U. F. Kocks,et al.  The effect of dislocation self-interaction on the Orowan stress , 1973 .

[45]  B. Cheadle,et al.  The transformation and age hardening behaviour of Zr-19 WT% Nb , 1973 .

[46]  H. R. Higgy,et al.  EFFECT OF NEUTRON IRRADIATION ON THE TENSILE PROPERTIES OF ZIRCALOY-2 AND ZIRCALOY-4. , 1972 .

[47]  A. J. Perkins,et al.  The isothermal omega transformation in zirconium-niobium alloys , 1971 .

[48]  W. Langford,et al.  Metallurgical properties of irradiated cold-worked Zr-2.5 wt% Nb pressure tubes , 1971 .

[49]  F. Wiesinger,et al.  Unirradiated, in-pile and post-irradiation low strain rate tensile properties of zircaloy-4 , 1969 .

[50]  C. Cupp The effect of neutron irradiation on the mechanical properties of zirconium-2.5 % niobium alloy , 1962 .

[51]  R. E. Jamison,et al.  Radiation hardening of copper single crystals , 1960 .

[52]  L. M. Howe,et al.  The effect of neutron irradiation on the tensile properties of zircaloy-2 , 1960 .

[53]  D. Tabor The physical meaning of indentation and scratch hardness , 1956 .

[54]  T. Toyama,et al.  The effect of crystallographic mismatch on the obstacle strength of second phase precipitate particles in dispersion strengthening: bcc Nb particles and nanometric Nb clusters embedded in hcp Zr , 2016 .

[55]  Srikumar Banerjee,et al.  Phase transformations : examples from titanium and zirconium alloys , 2007 .

[56]  M. Puls,et al.  Deformation behavior of irradiated Zr-2.5Nb pressure tube material , 1994 .

[57]  G. Purdy,et al.  A study of the distribution of Nb and Fe in two-phase Zr-2.5 wt% Nb alloys , 1993 .

[58]  C. D. Williams,et al.  The influence of niobium in irradiation strengthening of dilute Zr-Nb alloys , 1968 .

[59]  P. Hirsch,et al.  Elastic interaction between prismatic dislocation loops and straight dislocations , 1964 .