Algorithm for cardinality-constrained quadratic optimization

Abstract This paper describes an algorithm for cardinality-constrained quadratic optimization problems, which are convex quadratic programming problems with a limit on the number of non-zeros in the optimal solution. In particular, we consider problems of subset selection in regression and portfolio selection in asset management and propose branch-and-bound based algorithms that take advantage of the special structure of these problems. We compare our tailored methods against CPLEX’s quadratic mixed-integer solver and conclude that the proposed algorithms have practical advantages for the special class of problems we consider.

[1]  Gwyneth Owens Butera The solution of a class of limited diversification portfolio selection problems , 1997 .

[2]  George M. Furnival,et al.  Regressions by leaps and bounds , 2000 .

[3]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[4]  G. Hoek,et al.  The Optimal Selection of Small Portfolios , 1983 .

[5]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[6]  Maria Grazia Speranza,et al.  Heuristic algorithms for the portfolio selection problem with minimum transaction lots , 1999, Eur. J. Oper. Res..

[7]  William H. Press,et al.  Numerical Recipes in Fortran 77: The Art of Scientific Computing 2nd Editionn - Volume 1 of Fortran Numerical Recipes , 1992 .

[8]  G. Mitra,et al.  Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints , 2001 .

[9]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[10]  William H. Press,et al.  Numerical recipes in C , 2002 .

[11]  Daniel Bienstock,et al.  Computational study of a family of mixed-integer quadratic programming problems , 1995, Math. Program..

[12]  W. Sharpe OF FINANCIAL AND QUANTITATIVE ANALYSIS December 1971 A LINEAR PROGRAMMING APPROXIMATION FOR THE GENERAL PORTFOLIO ANALYSIS PROBLEM , 2009 .

[13]  Alan J. Miller,et al.  Subset Selection in Regression , 1991 .

[14]  Dimitris Bertsimas,et al.  Portfolio Construction Through Mixed-Integer Programming at Grantham, Mayo, Van Otterloo and Company , 1999, Interfaces.

[15]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[16]  W. Sharpe A Linear Programming Algorithm for Mutual Fund Portfolio Selection , 1967 .

[17]  Nancy L. Jacob A Limited-Diversification Portfolio Selection Model for the Small Investor , 1974 .

[18]  M. Kendall,et al.  The discarding of variables in multivariate analysis. , 1967, Biometrika.

[19]  N. Patel,et al.  A Simple Algorithm for Optimal Portfolio Selection with Fixed Transaction Costs , 1982 .

[20]  Robert W. Wilson,et al.  Regressions by Leaps and Bounds , 2000, Technometrics.

[21]  R. Mansini,et al.  An exact approach for portfolio selection with transaction costs and rounds , 2005 .

[22]  Hiroshi Konno,et al.  Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints , 2001, Math. Program..

[23]  R. R. Hocking,et al.  Selection of the Best Subset in Regression Analysis , 1967 .

[24]  Subhash C. Narula,et al.  Selection of Variables in Linear Regression Using the Minimum Sum of Weighted Absolute Errors Criterion , 1979 .

[25]  Thomas P. Ryan,et al.  Modern Regression Methods , 1996 .

[26]  Alan J. Miller Subset Selection in Regression , 1992 .

[27]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[28]  C. E. Lemke,et al.  Equilibrium Points of Bimatrix Games , 1964 .

[29]  Yadolah Dodge,et al.  Mathematical Programming In Statistics , 1981 .