Evidence of a discontinuous disk structure around the Herbig Ae star HD 139614 (Corrigendum)

The formation and evolution of a planetary system are intrinsically linked to the evolution of the primordial accretion disk and its dust and gas content. A new class of pre-main sequence objects has been recently identified as pre-transitional disks. They present near-infrared excess coupled to a flux deficit at about 10 microns and a rising mid-infrared and far-infrared spectrum. These features suggest a disk structure with inner and outer dust components, separated by a dust-depleted region (or gap). This could be the result of particular planet formation mechanisms that occur during the disk evolution. We here report on the first interferometric observations of the disk around the Herbig Ae star HD 139614. Its infrared spectrum suggests a flared disk, and presents pre-transitional features, namely a substantial near-infrared excess accompanied by a dip around 6 microns and a rising mid-infrared part. In this framework, we performed a study of the spectral energy distribution (SED) and the mid-infrared VLTI/MIDI interferometric data to constrain the spatial structure of the inner dust disk region and assess its possibly multi-component structure. We based our work on a temperature-gradient disk model that includes dust opacity. While we could not reproduce the SED and interferometric visibilities with a one-component disk, a better agreement was obtained with a two-component disk model composed of an optically thin inner disk extending from 0.22 to 2.3 AU, a gap, and an outer temperature-gradient disk starting at 5.6 AU. Therefore, our modeling favors an extended and optically thin inner dust component and in principle rules out the possibility that the near-infrared excess originates only from a spatially confined region. Moreover, the outer disk is characterized by a very steep temperature profile and a temperature higher than 300 K at its inner edge. This suggests the existence of a warm component corresponding to a scenario where the inner edge of the outer disk is directly illuminated by the central star. This is an expected consequence of the presence of a gap, thus indicative of a “pre-transitional” structure.

[1]  J. Mathis Interstellar dust and extinction , 1987 .

[2]  R. L. Akeson,et al.  SPATIALLY RESOLVED SPECTROSCOPY OF SUB–AU-SIZED REGIONS OF T TAURI AND HERBIG AE/BE DISKS , 2008, 0809.5054.

[3]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[4]  M. Min,et al.  The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks , 2004, Nature.

[5]  Bram AckeMario E. van den Ancker ISO spectroscopy of disks around Herbig Ae/Be stars , , 2004, astro-ph/0406050.

[6]  PAHs in circumstellar disks around Herbig Ae/Be stars , 2004, astro-ph/0405195.

[7]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[8]  F. Ménard,et al.  The Inner Radius of T Tauri Disks Estimated from Near-Infrared Interferometry: The Importance of Scattered Light , 2007, 0712.0012.

[9]  Rafael Millan-Gabet,et al.  Spatially Resolved Circumstellar Structure of Herbig Ae/Be Stars in the Near-Infrared , 2000 .

[10]  C. Dominik,et al.  Full two-dimensional radiative transfer modelling of the transitional disk LkCa 15 , 2010, 1001.2146.

[11]  David Wilner,et al.  Evidence for a Developing Gap in a 10 Myr Old Protoplanetary Disk , 2002 .

[12]  P. Varniere,et al.  Constraining the structure of the planet-forming region in the disk of the Herbig Be star HD 100546 ? , 2011, 1104.0905.

[13]  L. Hillenbrand,et al.  Accepted for publication in the Astrophysical Journal Near-Infrared Interferometric Measurements of Herbig Ae/Be Stars , 2003 .

[14]  Frederick J. Vrba,et al.  Herbig Ae/Be Stars: Intermediate-Mass Stars Surrounded by Massive Circumstellar Accretion Disks , 1992 .

[15]  Vincent Mannings,et al.  A reconsideration of disk properties in Herbig Ae stars , 2001 .

[16]  Catherine Espaillat,et al.  TRANSITIONAL AND PRE-TRANSITIONAL DISKS: GAP OPENING BY MULTIPLE PLANETS? , 2010, 1012.4395.

[17]  Th. Henning,et al.  Steps toward interstellar silicate mineralogy - VII. Spectral properties and crystallization behaviour of magnesium silicates produced by the sol-gel method , 2003 .

[18]  Sebastiano Ligori,et al.  Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI , 2004 .

[19]  Catherine Espaillat,et al.  Confirmation of a Gapped Primordial Disk around LkCa 15 , 2008, 0807.2291.

[20]  T. Henning,et al.  MID-INFRARED SPECTRAL VARIABILITY ATLAS OF YOUNG STELLAR OBJECTS , 2012, 1204.3473.

[21]  S. Wolf,et al.  Spatially resolved mid-infrared observations of the triple system T Tauri , 2009, 0907.0464.

[22]  T. Jenness,et al.  Structure in the ∊ Eridani Debris Disk , 2005 .

[23]  C. Dominik,et al.  Flaring and self-shadowed disks around Herbig Ae stars: simulations for 10 μm interferometers , 2005 .

[24]  C. Lada,et al.  Spectral evolution of young stellar objects , 1986 .

[25]  Mark R. Kidger,et al.  Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra , 1999 .

[26]  M. Min,et al.  Identifying gaps in flaring Herbig Ae/Be disks using spatially resolved mid-infrared imaging - Are all group I disks transitional? , 2013, 1305.3138.

[27]  M. Min,et al.  DUST EVOLUTION IN PROTOPLANETARY DISKS AROUND HERBIG Ae/Be STARS—THE SPITZER VIEW , 2010, 1008.0083.

[28]  T. Henning,et al.  High spatial resolution mid-infrared observations of the low-mass young star TW Hydrae , 2007, 0707.0193.

[29]  Marshall D. Perrin,et al.  RULING OUT STELLAR COMPANIONS AND RESOLVING THE INNERMOST REGIONS OF TRANSITIONAL DISKS WITH THE KECK INTERFEROMETER , 2009, 0912.0846.

[30]  D. M. Watson,et al.  UNVEILING THE STRUCTURE OF PRE-TRANSITIONAL DISKS , 2010, 1005.2365.

[31]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[32]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[33]  First AU-scale observations of V1647 Orionis with VLTI/MIDI , 2006, astro-ph/0602334.

[34]  M. E. van den Ancker,et al.  ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: Towards an understanding of dust processing , 2001 .

[35]  E. Blackman,et al.  Planets Rapidly Create Holes in Young Circumstellar Disks , 2005, astro-ph/0510235.

[36]  Richard J. Mathar,et al.  MIDI the 10 m instrument on the VLTI , 2003 .

[37]  S. Wolf,et al.  A close look into the carbon disk at the core of the planetary nebula CPD-56°8032 , 2006, astro-ph/0606745.

[38]  Benjamin F. Lane,et al.  New insights on the AU-scale circumstellar structure of FU Orionis , 2005 .

[39]  S. Wolf,et al.  The T Tauri star RY Tauri as a case study of the inner regions of circumstellar dust disks , 2007, 0712.0696.

[40]  G. Weigelt,et al.  Strong near-infrared emission in the sub-AU disk of the Herbig Ae star HD 163296: evidence of refractory dust? , 2009, 0911.4363.

[41]  J. D. Monnier,et al.  The Inner Regions of Protoplanetary Disks , 2010, 1006.3485.

[42]  L. Hillenbrand,et al.  Resolved Inner Disks around Herbig Ae/Be Stars , 2004, astro-ph/0406356.

[43]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[44]  T. Henning,et al.  SPITZER'S VIEW ON AROMATIC AND ALIPHATIC HYDROCARBON EMISSION IN HERBIG Ae STARS , 2010, 1006.1130.

[45]  L. Testi,et al.  Accretion Rates in Herbig Ae stars , 2006 .

[46]  O. Panić,et al.  Characterising discs around Herbig Ae/Be stars through modelling of low-J $^{12}$CO lines , 2009 .

[47]  Florentin Millour,et al.  Mapping the radial structure of AGN tori , 2011, 1110.4290.

[48]  M. J. Barlow,et al.  Optical, infrared and millimetre-wave properties of Vega-like systems - III. Models with thermally spiking grains , 1997 .

[49]  O. Chesneau MIDI: Obtaining and analysing interferometric data in the mid-infrared , 2007 .

[50]  Investigation of the magnetic field characteristics of Herbig Ae/Be stars: Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars , 2005, astro-ph/0509295.

[51]  M. Schoeller,et al.  Accurate magnetic field measurements of Vega-like stars and Herbig Ae/Be stars ⋆ , 2005, astro-ph/0510157.

[52]  Zurich,et al.  The effect of a planet on the dust distribution in a 3D protoplanetary disk , 2007, 0708.4110.

[53]  A. Königl,et al.  A DISK-WIND MODEL FOR THE NEAR-INFRARED EXCESS EMISSION IN PROTOSTARS , 2012, 1207.1508.

[54]  S. Wolf,et al.  The flared inner disk of the Herbig Ae star AB Aurigae revealed by VLTI/MIDI in the N-band , 2009 .

[55]  L. Hartmann,et al.  On the Diversity of the Taurus Transitional Disks: UX Tauri A and LkCa 15 , 2007, 0710.2892.

[56]  N. Calvet,et al.  ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS , 2012, 1201.1518.

[57]  C. Dominik,et al.  Why circumstellar disks are so faint in scattered light: the case of HD 100546 , 2012, 1210.4132.

[58]  Gerard Zins,et al.  SearchCal: a Virtual Observatory tool for searching calibrators in optical long-baseline interferometry II. The faint-object case , 2006 .

[59]  Charles J. Lada,et al.  The disks of T Tauri stars with flat infrared spectra , 1987 .

[60]  M. Min,et al.  A 10 μm spectroscopic survey of Herbig Ae star disks: Grain growth and crystallization , 2005, astro-ph/0503507.

[61]  G. Zins,et al.  SearchCal: a Virtual Observatory tool for searching calibrators in optical long-baseline interferometry II. The faint-object case , 2006, astro-ph/0607026.

[62]  E. Tatulli,et al.  The complex structure of the disk around HD 100546 - The inner few astronomical units , 2010, 1001.2491.

[63]  M. E. van den Ancker,et al.  The structure of the protoplanetary disk surrounding three young intermediate mass stars II. Spatially resolved dust and gas distribution , 2008, 0809.3947.

[64]  C. Clarke,et al.  Photoevaporation of protoplanetary discs - II. Evolutionary models and observable properties , 2006, astro-ph/0603254.

[65]  C. Dominik,et al.  Understanding the spectra of isolated Herbig stars in the frame of a passive disk model , 2002, astro-ph/0212032.

[66]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[67]  A. Richichi,et al.  Tracing the potential planet-forming regions around seven pre-main-sequence stars , 2009, 0905.0565.

[68]  M. Barlow,et al.  High-resolution spectroscopy of Vega-like stars — II. Age indicators, activity and circumstellar gas , 1997 .