Anti‐inflammatory effects of continuous passive motion on meniscal fibrocartilage

[1]  F. Houssiau,et al.  Cytokines in rheumatoid arthritis , 1995, Clinical Rheumatology.

[2]  B. Bresnihan,et al.  Quantitation of metalloproteinase gene expression in rheumatoid and psoriatic arthritis synovial tissue distal and proximal to the cartilage-pannus junction. , 2004, The Journal of rheumatology.

[3]  J. Mitchell,et al.  Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[4]  K. Verstraete,et al.  Arthroscopic meniscus repair: inside-out technique vs. Biofix meniscus arrow , 2004, Knee Surgery, Sports Traumatology, Arthroscopy.

[5]  J. Connor,et al.  Prospective Comparison of Arthroscopic Medial Meniscal Repair Technique , 2003, The American journal of sports medicine.

[6]  Farshid Guilak,et al.  Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. , 2003, Journal of applied physiology.

[7]  Y. An,et al.  Histological Techniques for Decalcified Bone and Cartilage , 2003 .

[8]  N. Piesco,et al.  Signaling by mechanical strain involves transcriptional regulation of proinflammatory genes in human periodontal ligament cells in vitro. , 2002, Bone.

[9]  S. Agarwal,et al.  Low Magnitude of Tensile Strain Inhibits IL-1β-dependent Induction of Pro-inflammatory Cytokines and Induces Synthesis of IL-10 in Human Periodontal Ligament Cells in vitro , 2001, Journal of dental research.

[10]  R. Bray,et al.  Vascular response of the meniscus to injury: Effects of immobilization , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[11]  R. Gassner,et al.  Cyclic tensile strain suppresses catabolic effects of interleukin-1beta in fibrochondrocytes from the temporomandibular joint. , 2001, Arthritis and rheumatism.

[12]  F. Dell’Accio,et al.  Interleukin-10 and interleukin-10 receptor in human osteoarthritic and healthy chondrocytes. , 2001, Clinical and experimental rheumatology.

[13]  W. B. van den Berg,et al.  Intra‐articular IL‐10 gene transfer regulates the expression of collagen‐induced arthritis (CIA) in the knee and ipsilateral paw , 2000, Clinical and experimental immunology.

[14]  S. Kawai,et al.  Innervation of nociceptors in the menisci of the knee joint: an immunohistochemical study , 2000, Archives of Orthopaedic and Trauma Surgery.

[15]  C. P. Winlove,et al.  The osmotic pressure of chondroitin sulphate solutions: experimental measurements and theoretical analysis. , 1998, Biorheology.

[16]  J. Aldridge,et al.  Knee Joint Immobilization Decreases Aggrecan Gene Expression in the Meniscus , 1998, The American journal of sports medicine.

[17]  T. Cruz,et al.  Effects of continuous passive motion and immobilization on synovitis and cartilage degradation in antigen induced arthritis. , 1995, The Journal of rheumatology.

[18]  Salter Rb The physiologic basis of continuous passive motion for articular cartilage healing and regeneration , 1994 .

[19]  V C Mow,et al.  Material properties and structure-function relationships in the menisci. , 1990, Clinical orthopaedics and related research.

[20]  A. Hargens,et al.  Regional Nutrition and Cellularity of the Meniscus , 1988, Sports medicine.

[21]  A. Lauhio,et al.  Increased collagenase activity in human rheumatoid meniscus. , 1986, Scandinavian journal of rheumatology.

[22]  R. Salter,et al.  The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. , 1980, The Journal of bone and joint surgery. American volume.