The effects of structural flap-lag and pitch-lag coupling on soft inplane hingeless rotor stability in hover

Abstract : A 1.62-m-diameter rotor model was tested in hover to examine the effects of structural flap-lag and pitch-lag coupling on isolated rotor blade lead-lag stability. Flap-lag coupling was introduced by inclining the principal axes of the blade structure up to 60 deg. Pitch-lag coupling ws obtained either alone or in combination with flap-lag coupling through the use of skewed flexural hinges. The principal results confirm the predictions of theory, and show that both structural flap-lag and pitch-lag coupling when used separately are beneficial to blade stability. Moreover, when the couplings are combined, the lead-lag damping is significantly greater than it would be if the individual contributions were superimposed. Pitch-flap coupling is shown to have only a minor effect on blade lead-lag damping. Differences between theory and experiment observed at zero blade pitch and flexure angles during the initial testing were determined in a second test to be caused by stand flexibility. Other differences between theory and experiment warrant further investigation.