Mechanism of Ultrafast Photodecay in Restricted Motions in Protonated Schiff Bases: The Pentadieniminium Cation.

Ab initio surface-hopping dynamics simulations for the trans-penta-3,5-dieniminium cation (PSB3) are presented imposing different sets of mechanical restrictions in order to investigate the response of the molecular system to certain environmental degrees of hindrance. A general scheme for classification of photoisomerization mechanisms in conjugated chains based on the analysis of torsional angles is proposed allowing direct characterization of the different isomerization mechanisms proposed previously. On the basis of a statistical analysis of 300 trajectories a new photoisomerization mechanism-the Folding Table-was found. This mechanism and the One-Bond-Flip are almost entirely responsible for the photoisomerization process in PSB3.

[1]  Thomas Müller,et al.  High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin–orbit CI and parallel CI density , 2001 .

[2]  L. Cederbaum,et al.  Environmental effects on a conical intersection: a model study. , 2004, Faraday discussions.

[3]  R. Mathies,et al.  Femtosecond stimulated Raman spectroscopy. , 2007 .

[4]  W. Fuß,et al.  Structure of the Conical Intersections Driving the cis–trans Photoisomerization of Conjugated Molecules¶ , 2002, Photochemistry and photobiology.

[5]  Karl Edman,et al.  Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. , 2002, Biochimica et biophysica acta.

[6]  G. Atkinson,et al.  Vibrational Spectrum of the J-625 Intermediate in the Room Temperature Bacteriorhodopsin Photocycle , 2000 .

[7]  Klaus Schulten,et al.  Quantum Chemistry: Molecular Dynamics Study of the Dark-Adaptation Process in Bacteriorhodopsin , 1996 .

[8]  Igor Schapiro,et al.  Photochemistry of visual pigment chromophore models by ab initio molecular dynamics. , 2007, The journal of physical chemistry. B.

[9]  R A Mathies,et al.  Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment. , 1987, Biochemistry.

[10]  Marco Garavelli,et al.  Initial Excited-State Relaxation of the Isolated 11-cis Protonated Schiff Base of Retinal: Evidence for in-Plane Motion from ab Initio Quantum Chemical Simulation of the Resonance Raman Spectrum , 1999 .

[11]  Hans Lischka,et al.  A general multireference configuration interaction gradient program , 1992 .

[12]  M. Robb,et al.  Excited state molecular dynamics of retinal model chromophores , 2005 .

[13]  N. Mataga,et al.  Excited-state dynamics of rhodopsin probed by femtosecond fluorescence spectroscopy , 2001 .

[14]  Marco Garavelli,et al.  Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. , 2004, Journal of the American Chemical Society.

[15]  G. Granucci,et al.  Critical appraisal of the fewest switches algorithm for surface hopping. , 2007, The Journal of chemical physics.

[16]  C. H. Brito Cruz,et al.  Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. , 1988, Science.

[17]  T G Ebrey,et al.  Quantum efficiency of the photochemical cycle of bacteriorhodopsin. , 1990, Biophysical journal.

[18]  S Haacke,et al.  Insights into excited-state and isomerization dynamics of bacteriorhodopsin from ultrafast transient UV absorption. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Mathies,et al.  Structural Observation of the Primary Isomerization in Vision with Femtosecond-Stimulated Raman , 2005, Science.

[20]  R. Birge,et al.  Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. , 1990, Biochimica et biophysica acta.

[21]  Thom Vreven,et al.  Ab Initio Photoisomerization Dynamics of a Simple Retinal Chromophore Model , 1997 .

[22]  R A Mathies,et al.  The first step in vision: femtosecond isomerization of rhodopsin. , 1991, Science.

[23]  Marco Garavelli,et al.  Structure of the intersection space associated with ZIE photoisomerization of retinal in rhodopsin proteins. , 2004, Faraday discussions.

[24]  Michael A. Robb,et al.  Nonadiabatic Dynamics: A Comparison of Surface Hopping Direct Dynamics with Quantum Wavepacket Calculations , 2003 .

[25]  K. Schulten,et al.  Molecular dynamics simulation of bacteriorhodopsin's photoisomerization using ab initio forces for the excited chromophore. , 2003, Biophysical journal.

[26]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[27]  K. Houk,et al.  H/vinyl conical intersections of hexatrienes related to the hula-twist photoisomerization , 2006 .

[28]  V. Buss,et al.  Origin of spectral tuning in rhodopsin--it is not the binding pocket. , 2007, Angewandte Chemie.

[29]  M. Olivucci,et al.  Photoisomerization acceleration in retinal protonated Schiff-base models. , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[30]  Massimo Olivucci,et al.  Probing the Photochemical Funnel of a Retinal Chromophore Model via Zero-Point Energy Sampling Semiclassical Dynamics. , 2004 .

[31]  Arieh Warshel,et al.  Nature of the Surface Crossing Process in Bacteriorhodopsin: Computer Simulations of the Quantum Dynamics of the Primary Photochemical Event , 2001 .

[32]  D. Oesterhelt,et al.  Functions of a new photoreceptor membrane. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Klaus Schulten,et al.  Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. , 2006, Journal of the American Chemical Society.

[34]  Ursula Rothlisberger,et al.  Solvent and protein effects on the structure and dynamics of the rhodopsin chromophore. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  Gerrit Groenhof,et al.  Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis Isomerization of the chromophore in the protein. , 2004, Journal of the American Chemical Society.

[36]  Takashi Saito,et al.  Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization , 2001, Nature.

[37]  Arieh Warshel,et al.  Bicycle-pedal model for the first step in the vision process , 1976, Nature.

[38]  B. L. Volodin,et al.  Picosecond resonance coherent anti-Stokes Raman spectroscopy of bacteriorhodopsin: spectra and quantitative third-order susceptibility analysis of the light-adapted BR-570 , 1994 .

[39]  M. Barbatti,et al.  Nonadiabatic excited-state dynamics of polar pi-systems and related model compounds of biological relevance. , 2008, Physical chemistry chemical physics : PCCP.

[40]  R A Mathies,et al.  Vibrationally coherent photochemistry in the femtosecond primary event of vision. , 1994, Science.

[41]  J. Pople,et al.  Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements , 2002 .

[42]  Kazuya Saito,et al.  Theoretical study on hula-twist motion of penta-2,4-dieniminium on the S1 surface under isolated condition by the complete active space self-consistent field theory , 2006 .

[43]  M Elstner,et al.  Calculating absorption shifts for retinal proteins: computational challenges. , 2005, The journal of physical chemistry. B.

[44]  Alessandro Laio,et al.  A molecular spring for vision. , 2004, Journal of the American Chemical Society.

[45]  A. Asato,et al.  The primary process of vision and the structure of bathorhodopsin: a mechanism for photoisomerization of polyenes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[46]  H. Abramczyk,et al.  Primary events in the bacteriorhodopsin photocycle: Torsional vibrational dephasing in the first excited electronic state , 2005 .

[47]  Hans Lischka,et al.  The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems , 2007 .

[48]  Klaus Schulten,et al.  Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin. , 2002, Biophysical journal.

[49]  N. Ferré,et al.  Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry , 2007, Proceedings of the National Academy of Sciences.

[50]  Dage Sundholm,et al.  Stairway to the conical intersection: a computational study of the retinal isomerization. , 2007, The journal of physical chemistry. A.

[51]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[52]  V. Buss,et al.  Bond torsion affects the product distribution in the photoreaction of retinal model chromophores , 2006, Journal of molecular modeling.

[53]  Marco Garavelli,et al.  The C 5 H 6 NH 2 + Protonated Shiff Base: An ab Initio Minimal Model for Retinal Photoisomerization , 1997 .

[54]  R. Birge,et al.  Photophysics of light transduction in rhodopsin and bacteriorhodopsin. , 1981, Annual review of biophysics and bioengineering.

[55]  G. Wald The molecular basis of visual excitation. , 1968, Nature.

[56]  Hans Lischka,et al.  Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. I. Formalism. , 2004, The Journal of chemical physics.

[57]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[58]  S. Hammes-Schiffer,et al.  Proton transfer in solution: Molecular dynamics with quantum transitions , 1994 .

[59]  D. Oesterhelt,et al.  Closing in on bacteriorhodopsin: progress in understanding the molecule. , 1999, Annual review of biophysics and biomolecular structure.

[60]  J. Tully Mixed quantum–classical dynamics , 1998 .

[61]  A. Bunge,et al.  Electronic Wavefunctions for Atoms. III. Partition of Degenerate Spaces and Ground State of C , 1970 .

[62]  H. Lischka,et al.  Analytic MRCI gradient for excited states: formalism and application to the n-π* valence- and n-(3s,3p) Rydberg states of formaldehyde , 2002 .

[63]  Richard A Mathies,et al.  Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. , 2005, The journal of physical chemistry. B.

[64]  Helmut Grubmüller,et al.  Ultrafast deactivation of an excited cytosine-guanine base pair in DNA. , 2007, Journal of the American Chemical Society.

[65]  Massimo Olivucci,et al.  Relationship between photoisomerization path and intersection space in a retinal chromophore model. , 2003, Journal of the American Chemical Society.

[66]  R. Birge,et al.  Molecular dynamics of trans-cis isomerization in bathorhodopsin. , 1981, Biophysical journal.

[67]  Hans Lischka,et al.  Excited-state properties and environmental effects for protonated schiff bases: a theoretical study. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[68]  John C. Butcher,et al.  A Modified Multistep Method for the Numerical Integration of Ordinary Differential Equations , 1965, JACM.

[69]  Peter Pulay,et al.  The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces , 1992 .

[70]  D. Yarkony,et al.  Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. II. Minima on the crossing seam: formaldehyde and the photodimerization of ethylene. , 2004, The Journal of chemical physics.

[71]  M Olivucci,et al.  Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.