DNA polymerase as a molecular motor and pump.

DNA polymerase is responsible for synthesizing DNA, a key component in the running of biological machinery. Using fluorescence correlation spectroscopy, we demonstrate that the diffusive movement of a molecular complex of DNA template and DNA polymerase enhances during nucleotide incorporation into the growing DNA template. The diffusion coefficient of the complex also shows a strong dependence on its inorganic cofactor, Mg2+ ions. When exposed to gradients of either nucleotide or cofactor concentrations, an ensemble of DNA polymerase complex molecules shows collective movement toward regions of higher concentrations. By immobilizing the molecular complex on a patterned gold surface, we demonstrate the fabrication of DNA polymerase-powered fluid pumps. These miniature pumps are capable of transporting fluid and tracer particles in a directional manner with the pumping speed increasing in the presence of the cofactor. The role of DNA polymerase as a micropump opens up avenues for designing miniature fluid pumps using enzymes as engines.

[1]  T. Mallouk,et al.  Self-powered enzyme micropumps. , 2014, Nature chemistry.

[2]  T. Mallouk,et al.  Understanding the efficiency of autonomous nano- and microscale motors. , 2013, Journal of the American Chemical Society.

[3]  Samuel Sanchez,et al.  Chemotactic behavior of catalytic motors in microfluidic channels. , 2013, Angewandte Chemie.

[4]  Ryan Pavlick,et al.  Intelligent, self-powered, drug delivery systems. , 2013, Nanoscale.

[5]  Tristan Tabouillot,et al.  Enzyme molecules as nanomotors. , 2013, Journal of the American Chemical Society.

[6]  Ayusman Sen,et al.  Triggered "on/off" micropumps and colloidal photodiode. , 2012, Journal of the American Chemical Society.

[7]  Ayusman Sen,et al.  Fantastic voyage: designing self-powered nanorobots. , 2012, Angewandte Chemie.

[8]  H. Gaub,et al.  Single-molecule mechanoenzymatics. , 2012, Annual review of biophysics.

[9]  S. T. Phillips,et al.  Self-powered microscale pumps based on analyte-initiated depolymerization reactions. , 2012, Angewandte Chemie.

[10]  Ran Liu,et al.  Autonomous nanomotor based on copper-platinum segmented nanobattery. , 2011, Journal of the American Chemical Society.

[11]  Samudra Sengupta,et al.  A polymerization-powered motor. , 2011, Angewandte Chemie.

[12]  O. Schmidt,et al.  Tunable catalytic tubular micro-pumps operating at low concentrations of hydrogen peroxide. , 2011, Physical chemistry chemical physics : PCCP.

[13]  R. Astumian Stochastic conformational pumping: a mechanism for free-energy transduction by molecules. , 2011, Annual review of biophysics.

[14]  Martin Pumera,et al.  Nanomaterials meet microfluidics. , 2011, Chemical communications.

[15]  Oliver G. Schmidt,et al.  Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. , 2011, Chemical Society reviews.

[16]  J. Posner,et al.  Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis , 2010, Journal of Fluid Mechanics.

[17]  Henry Hess,et al.  A Biomimetic, Self‐Pumping Membrane , 2010, Advanced materials.

[18]  R. Golestanian Synthetic mechanochemical molecular swimmer. , 2010, Physical review letters.

[19]  Ayusman Sen,et al.  Light‐Driven Titanium‐Dioxide‐Based Reversible Microfireworks and Micromotor/Micropump Systems , 2010 .

[20]  A. Mikhailov,et al.  Nanoscale swimmers: hydrodynamic interactions and propulsion of molecular machines , 2010 .

[21]  Kenneth Showalter,et al.  Motion analysis of self-propelled Pt-silica particles in hydrogen peroxide solutions. , 2010, The journal of physical chemistry. A.

[22]  Vincent M. Rotello,et al.  Enzyme-amplified array sensing of proteins in solution and in biofluids. , 2010, Journal of the American Chemical Society.

[23]  Samudra Sengupta,et al.  Substrate catalysis enhances single-enzyme diffusion. , 2010, Journal of the American Chemical Society.

[24]  Joseph Wang,et al.  Motion control at the nanoscale. , 2010, Small.

[25]  Ayusman Sen,et al.  Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control. , 2010, Physical chemistry chemical physics : PCCP.

[26]  Geoffrey A Ozin,et al.  Nanolocomotion - catalytic nanomotors and nanorotors. , 2010, Small.

[27]  Tad Hogg,et al.  Chemical Power for Microscopic Robots in Capillaries , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[28]  Martin Pumera,et al.  Nanorobots: the ultimate wireless self-propelled sensing and actuating devices. , 2009, Chemistry, an Asian journal.

[29]  Juan J de Pablo,et al.  Molecular propulsion: chemical sensing and chemotaxis of DNA driven by RNA polymerase. , 2009, Journal of the American Chemical Society.

[30]  Melanie J. I. Müller,et al.  ACTIVE BIO-SYSTEMS: FROM SINGLE MOTOR MOLECULES TO COOPERATIVE CARGO TRANSPORT , 2009 .

[31]  N. Fiala The greenhouse hamburger. , 2009, Scientific American.

[32]  Joseph Wang,et al.  Can man-made nanomachines compete with nature biomotors? , 2009, ACS nano.

[33]  T. Mallouk,et al.  Powering nanorobots. , 2009, Scientific American.

[34]  Andrey Sokolov,et al.  Reduction of viscosity in suspension of swimming bacteria. , 2009, Physical review letters.

[35]  Viola Vogel,et al.  Harnessing biological motors to engineer systems for nanoscale transport and assembly. , 2008, Nature nanotechnology.

[36]  Raymond Kapral,et al.  Mesoscale modeling of molecular machines: cyclic dynamics and hydrodynamical fluctuations. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  J. Brady,et al.  Osmotic propulsion: the osmotic motor. , 2008, Physical review letters.

[38]  Asim Nisar,et al.  MEMS-based micropumps in drug delivery and biomedical applications , 2008 .

[39]  Ramin Golestanian,et al.  Mechanical response of a small swimmer driven by conformational transitions. , 2007, Physical review letters.

[40]  D. Velegol,et al.  Chemotaxis of nonbiological colloidal rods. , 2007, Physical review letters.

[41]  Ramin Golestanian,et al.  Self-motile colloidal particles: from directed propulsion to random walk. , 2007, Physical review letters.

[42]  Yang Wang,et al.  Hydrazine fuels for bimetallic catalytic microfluidic pumping. , 2007, Journal of the American Chemical Society.

[43]  O. Velev,et al.  Remotely powered self-propelling particles and micropumps based on miniature diodes. , 2007, Nature materials.

[44]  R. Golestanian,et al.  Designing phoretic micro- and nano-swimmers , 2007, cond-mat/0701168.

[45]  Rama R. Gullapalli,et al.  Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology. , 2007, Journal of biomedical optics.

[46]  Yang Wang,et al.  Catalytically induced electrokinetics for motors and micropumps. , 2006, Journal of the American Chemical Society.

[47]  Walter F Paxton,et al.  Chemical locomotion. , 2006, Angewandte Chemie.

[48]  Yang Wang,et al.  Catalytic micropumps: microscopic convective fluid flow and pattern formation. , 2005, Journal of the American Chemical Society.

[49]  Walter F Paxton,et al.  Motility of catalytic nanoparticles through self-generated forces. , 2005, Chemistry.

[50]  R. Golestanian,et al.  Propulsion of a molecular machine by asymmetric distribution of reaction products. , 2005, Physical review letters.

[51]  Th. W. Engelmann,et al.  Zur Biologie der Schizomyceten , 1881, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[52]  Th. W. Engelmann,et al.  Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und thierischer Organismen , 1881, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[53]  Geoffrey A. Ozin,et al.  Dream Nanomachines , 2005 .

[54]  Yanyan Cao,et al.  Catalytic nanomotors: autonomous movement of striped nanorods. , 2004, Journal of the American Chemical Society.

[55]  P. Devreotes,et al.  Chemotaxis: signalling the way forward , 2004, Nature Reviews Molecular Cell Biology.

[56]  J. Santiago,et al.  A review of micropumps , 2004 .

[57]  T. Kenny,et al.  Measurements and modeling of two-phase flow in microchannels with nearly constant heat flux boundary conditions , 2002 .

[58]  T. Steitz,et al.  Structure of the replicating complex of a pol alpha family DNA polymerase. , 2009, Cell.

[59]  R. Astumian,et al.  Making molecules into motors. , 2001, Scientific American.

[60]  Thomas A. Steitz,et al.  Structure of the Replicating Complex of a Pol α Family DNA Polymerase , 2001, Cell.

[61]  Peter Enoksson,et al.  A Valve-Less Diffuser Micropump for Microfluidic Analytical Systems , 2001 .

[62]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[63]  S. Jacobson,et al.  Integrated system for rapid PCR-based DNA analysis in microfluidic devices. , 2000, Analytical chemistry.

[64]  S C Jakeway,et al.  Miniaturized total analysis systems for biological analysis , 2000, Fresenius' journal of analytical chemistry.

[65]  T. Steitz,et al.  Building a Replisome from Interacting Pieces Sliding Clamp Complexed to a Peptide from DNA Polymerase and a Polymerase Editing Complex , 1999, Cell.

[66]  A. Dash,et al.  Therapeutic applications of implantable drug delivery systems. , 1998, Journal of pharmacological and toxicological methods.

[67]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[68]  T. Steitz,et al.  Crystal Structure of a pol α Family Replication DNA Polymerase from Bacteriophage RB69 , 1997, Cell.

[69]  R. Astumian Thermodynamics and kinetics of a Brownian motor. , 1997, Science.

[70]  T. Steitz,et al.  Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. , 1997, Cell.

[71]  M. A. Northrup,et al.  Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. , 1996, Analytical chemistry.

[72]  K. Johnson,et al.  Conformational coupling in DNA polymerase fidelity. , 1993, Annual review of biochemistry.

[73]  S. Benkovic,et al.  Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. , 1992, Biochemistry.

[74]  Albert van den Berg,et al.  A silicon integrated miniature chemical analysis system , 1992 .

[75]  John L. Anderson,et al.  Colloid Transport by Interfacial Forces , 1989 .

[76]  J. Rush,et al.  Rapid purification of overexpressed T4 DNA polymerase. , 1989, Preparative biochemistry.

[77]  D. Prieve,et al.  Motion of a particle generated by chemical gradients. Part 2. Electrolytes , 1982, Journal of Fluid Mechanics.

[78]  D. Prieve,et al.  Diffusiophoresis: Migration of Colloidal Particles in Gradients of Solute Concentration , 1984 .

[79]  E. Purcell Life at Low Reynolds Number , 2008 .

[80]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[81]  J. Adler,et al.  Chemoreceptors in bacteria. , 1969, Science.