Benchmarking of QSAR Models for Blood-Brain Barrier Permeation

Using the largest available database of 328 blood-brain distribution (logBB) values, a quantitative benchmark was proposed to allow for a consistent comparison of the predictive accuracy of current and future logBB/quantitative structure-activity relationship (-QSAR) models. The usefulness of the benchmark was illustrated by comparing the global and k-nearest neighbors (kNN) multiple-linear regression (MLR) models based on the linear free-energy relationship (LFER) descriptors, and one non-LFER-based MLR model. The leave-one-out (LOO) and leave-group-out Monte Carlo (MC) cross-validation results (q(2) = 0.766, qms = 0.290, and qms(mc) = 0.311) indicated that the LFER-based kNN-MLR model was currently one of the most accurate predictive logBB-QSAR models. The LOO, MC, and kNN-MLR methods have been implemented in the QSAR-BENCH program, which is freely available from www.dmitrykonovalov.org for academic use.

[1]  Ramamurthi Narayanan,et al.  In silico ADME modelling: prediction models for blood-brain barrier permeation using a systematic variable selection method. , 2005, Bioorganic & medicinal chemistry.

[2]  W. L. Jorgensen,et al.  Prediction of Properties from Simulations: Free Energies of Solvation in Hexadecane, Octanol, and Water , 2000 .

[3]  Biye Ren,et al.  A New Topological Index for QSPR of Alkanes , 1999, J. Chem. Inf. Comput. Sci..

[4]  Andreas Klamt,et al.  Prediction of Blood-Βrain Partitioning and Human Serum Albumin Binding Based on COSMO-RS σ-Moments , 2007, J. Chem. Inf. Model..

[5]  Bernard Testa,et al.  A simple model to predict blood-brain barrier permeation from 3D molecular fields. , 2002, Biochimica et biophysica acta.

[6]  P. Selzer,et al.  Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. , 2000, Journal of medicinal chemistry.

[7]  Lemont B. Kier,et al.  Modeling Blood-Brain Barrier Partitioning Using the Electrotopological State , 2002, J. Chem. Inf. Comput. Sci..

[8]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[9]  Yi Li,et al.  Constructing Optimum Blood Brain Barrier QSAR Models Using a Combination of 4D-Molecular Similarity Measures and Cluster Analysis , 2004, J. Chem. Inf. Model..

[10]  H. van de Waterbeemd,et al.  ADMET in silico modelling: towards prediction paradise? , 2003, Nature reviews. Drug discovery.

[11]  Yi-Zeng Liang,et al.  Monte Carlo cross‐validation for selecting a model and estimating the prediction error in multivariate calibration , 2004 .

[12]  D. E. Clark In silico prediction of blood-brain barrier permeation. , 2003, Drug discovery today.

[13]  Arup K. Ghose,et al.  Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics , 1989, J. Chem. Inf. Comput. Sci..

[14]  M. Feher,et al.  A simple model for the prediction of blood-brain partitioning. , 2000, International journal of pharmaceutics.

[15]  Z R Li,et al.  MODEL—molecular descriptor lab: A web‐based server for computing structural and physicochemical features of compounds , 2007, Biotechnology and bioengineering.

[16]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[17]  Miguel A. Cabrera,et al.  TOPS-MODE approach for the prediction of blood-brain barrier permeation. , 2004, Journal of pharmaceutical sciences.

[18]  Yi-Zeng Liang,et al.  Monte Carlo cross validation , 2001 .

[19]  Lemont B. Kier,et al.  A Shape Index from Molecular Graphs , 1985 .

[20]  Alexandre Varnek,et al.  Correlation of blood-brain penetration using structural descriptors. , 2006, Bioorganic & medicinal chemistry.

[21]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[22]  Yiannis N. Kaznessis,et al.  Prediction of blood-brain partitioning using Monte Carlo simulations of molecules in water , 2001, J. Comput. Aided Mol. Des..

[23]  Tingjun Hou,et al.  ADME evaluation in drug discovery , 2002, Journal of molecular modeling.

[24]  Igor V. Tetko,et al.  Virtual Computational Chemistry Laboratory – Design and Description , 2005, J. Comput. Aided Mol. Des..

[25]  James A. Platts,et al.  Estimation of Molecular Linear Free Energy Relation Descriptors Using a Group Contribution Approach , 1999, J. Chem. Inf. Comput. Sci..

[26]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[27]  Tingjun Hou,et al.  ADME Evaluation in Drug Discovery. 3. Modeling Blood-Brain Barrier Partitioning Using Simple Molecular Descriptors , 2003, J. Chem. Inf. Comput. Sci..

[28]  Prabha Garg,et al.  In Silico Prediction of Blood Brain Barrier Permeability: An Artificial Neural Network Model , 2006, J. Chem. Inf. Model..

[29]  Y. Martin,et al.  Do structurally similar molecules have similar biological activity? , 2002, Journal of medicinal chemistry.

[30]  Douglas B. Kitchen,et al.  Computational models to predict blood–brain barrier permeation and CNS activity , 2003, J. Comput. Aided Mol. Des..

[31]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[32]  Zhi-Wei Cao,et al.  Effect of Selection of Molecular Descriptors on the Prediction of Blood-Brain Barrier Penetrating and Nonpenetrating Agents by Statistical Learning Methods , 2005, J. Chem. Inf. Model..

[33]  Ting Chen,et al.  Local Lazy Regression: Making Use of the Neighborhood to Improve QSAR Predictions , 2006, J. Chem. Inf. Model..

[34]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[35]  Lemont B. Kier,et al.  An Electrotopological-State Index for Atoms in Molecules , 1990, Pharmaceutical Research.

[36]  Hongmao Sun,et al.  A Universal Molecular Descriptor System for Prediction of LogP, LogS, LogBB, and Absorption , 2004, J. Chem. Inf. Model..

[37]  Remigijus Didziapetris,et al.  Fragmental Methods in the Design of New Compounds. Applications of The Advanced Algorithm Builder , 2002 .

[38]  M. Abraham,et al.  A data base for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the data. , 2006, Journal of pharmaceutical sciences.

[39]  J. Platts,et al.  Correlation and prediction of a large blood-brain distribution data set--an LFER study. , 2001, European journal of medicinal chemistry.