Graphical causal models and VARs: an empirical assessment of the real business cycles hypothesis

This paper assesses the empirical plausibility of the real business cycle view that shocks to real variables are the dominant sources of economic fluctuations and that monetary policy shocks play an insignificant role in determining the behavior of real variables. I reconsider the vector autoregressive model of King et al. (Am Econ Rev 81:819–840, 1991), but propose an alternative identification method, based on graphical causal models. This method selects the contemporaneous causal structure using the information incorporated in the partial correlations among the residuals. The residuals orthogonalization which follows and the study of the impulse response functions confirm the results of King et al. (Am Econ Rev 81:819–840, 1991): permanent productivity shocks are not the dominant sources of aggregate fluctuations in US economy.

[1]  Wolfgang Spohn,et al.  Stochastic independence, causal independence, and shieldability , 1980, J. Philos. Log..

[2]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[3]  K. Hoover,et al.  Searching for the Causal Structure of a Vector Autoregression , 2003 .

[4]  S. Johansen Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models , 1991 .

[5]  Helmut Lütkepohl,et al.  Introduction to multiple time series analysis , 1991 .

[6]  S. Johansen STATISTICAL ANALYSIS OF COINTEGRATION VECTORS , 1988 .

[7]  Jon Faust,et al.  When Do Long-Run Identifying Restrictions Give Reliable Results? , 1997 .

[8]  Steffen L. Lauritzen,et al.  Causal Inference from Graphical Models , 2001 .

[9]  K. Hoover Causality in Macroeconomics , 2001 .

[10]  Marco Reale,et al.  Identification of vector AR models with recursive structural errors using conditional independence graphs , 2001 .

[11]  D. Cox,et al.  Complex stochastic systems , 2000 .

[12]  A. Zellner An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias , 1962 .

[13]  Mtw,et al.  Computation, causation, and discovery , 2000 .

[14]  D. Bessler,et al.  The Structure of Interdependence in International Stock Markets , 2002 .

[15]  C. Granger Some recent development in a concept of causality , 1988 .

[16]  James D. Hamilton Time Series Analysis , 1994 .

[17]  Alessio Moneta,et al.  Graphical Models for Structural Vector Autoregressions , 2003 .

[18]  Charles I. Plosser,et al.  Stochastic Trends and Economic Fluctuations , 1987 .

[19]  D. Bessler,et al.  Causality And Price Discovery: An Application Of Directed Acyclic Graphs , 2004 .

[20]  Clive W. J. Granger,et al.  Some recent developments in a concept of causality , 2001 .

[21]  Norman R. Swanson,et al.  Impulse Response Functions Based on a Causal Approach to Residual Orthogonalization in Vector Autoregressions , 1997 .

[22]  T. Awokuse,et al.  Vector Autoregressions, Policy Analysis, and Directed Acyclic Graphs: An Application to the U.S. Economy , 2003 .

[23]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[24]  Richard Scheines,et al.  TETRAD II : tools for causal modeling , 1994 .

[25]  P. Gregg,et al.  King Charles I , 1981 .

[26]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[27]  C. Sims MACROECONOMICS AND REALITY , 1977 .

[28]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[29]  David A. Bessler,et al.  Money and prices: U.S. Data 1869–1914 (A study with directed graphs) , 2002 .

[30]  Thomas S. Richardson,et al.  Automated discovery of linear feedback models , 1996 .

[31]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[32]  J. N. R. Jeffers,et al.  Graphical Models in Applied Multivariate Statistics. , 1990 .