Numerical analysis of a finite element projection-based VMS turbulence model with wall laws

Abstract This paper deals with the numerical analysis of a finite element projection-based VMS turbulence model that includes general non-linear wall laws. Only a single mesh and interpolation operators on a virtual coarser mesh are needed to implement the model. We include a projection-stabilization of pressure to use the same interpolation for velocity and pressure. Good accuracy is obtained with benchmark turbulent flow problems on coarse grids, that justify the interest of this approach. Also, the model solves smooth flows with optimal accuracy.

[1]  P. Moin,et al.  Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow , 1994 .

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[4]  T. Kármán,et al.  Mechanische Ahnlichkeit und Turbulenz , 1930 .

[5]  R. Codina Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .

[6]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[7]  R. Codina A stabilized finite element method for generalized stationary incompressible flows , 2001 .

[8]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[9]  Volker John,et al.  Numerical Studies of Finite Element Variational Multiscale Methods for Turbulent Flow Simulations , 2010 .

[10]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[11]  Tomás Chacón Rebollo A term by term stabilization algorithm for finite element solution of incompressible flow problems , 1998 .

[12]  I. Akkerman Adaptive Variational Multiscale Formulations using the Discrete Germano , 2007 .

[13]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[14]  Jacques Rappaz,et al.  Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .

[15]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[16]  Vivette Girault,et al.  A high order term-by-term stabilization solver for incompressible flow problems , 2013 .

[17]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[18]  Thierry Dubois,et al.  Dynamic multilevel methods and the numerical simulation of turbulence , 1999 .

[19]  Tomás Chacón Rebollo An analysis technique for stabilized finite element solution of incompressible flows , 2001 .

[20]  Frédéric Hecht,et al.  Numerical approximation of the Smagorinsky turbulence model applied to the primitive equations of the ocean , 2014, Math. Comput. Simul..

[21]  R. Codina Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .

[22]  R. Verfürth Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .

[23]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[24]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[25]  Santiago Badia,et al.  Dissipative Structure and Long Term Behavior of a Finite Element Approximation of Incompressible Flows with Numerical Subgrid Scale Modeling , 2010 .

[26]  R. Verfürth Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions , 1985 .

[27]  Cornelius O. Horgan,et al.  Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..

[28]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[29]  Volker John,et al.  On large Eddy simulation and variational multiscale methods in the numerical simulation of turbulent incompressible flows , 2006 .

[30]  Carlos Paré,et al.  Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids , 1992 .

[31]  L. Berselli,et al.  Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .

[32]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.

[33]  Roger Lewandowski,et al.  Mathematical and Numerical Foundations of Turbulence Models and Applications , 2014 .

[34]  F. Brezzi,et al.  Finite Dimensional Approximation of Non-Linear Problems .3. Simple Bifurcation Points , 1981 .

[35]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[36]  Erik Burman,et al.  Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: Monitoring artificial dissipation , 2007 .

[37]  L. Prandtl 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1925 .

[38]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[39]  T. Chacón Rebollo,et al.  Numerical Analysis of Penalty Stabilized Finite Element Discretizations of Evolution Navier–Stokes Equations , 2015, J. Sci. Comput..

[40]  P. Moin,et al.  Numerical investigation of turbulent channel flow , 1981, Journal of Fluid Mechanics.

[41]  Christine Bernardi,et al.  Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .

[42]  CHRISTINE BERNARDI,et al.  Finite element discretization of the Stokes and Navier – Stokes equations with boundary conditions on the pressure by , 2014 .

[43]  D. Spalding A Single Formula for the “Law of the Wall” , 1961 .

[44]  T. C. Rebollo,et al.  A variational finite element model for large-eddy simulations of turbulent flows , 2013, 1302.2753.

[45]  Volker Gravemeier,et al.  Scale-separating operators for variational multiscale large eddy simulation of turbulent flows , 2006, J. Comput. Phys..

[46]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[47]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[48]  Volker John,et al.  A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..

[49]  P. Fischer,et al.  Large eddy simulation of turbulent channel flows by the rational large eddy simulation model , 2002 .

[50]  Li-Bin Liu,et al.  A Robust Adaptive Grid Method for a System of Two Singularly Perturbed Convection-Diffusion Equations with Weak Coupling , 2014, J. Sci. Comput..

[51]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[52]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[53]  Volker John,et al.  Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity , 2008 .

[54]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[55]  E. R. V. Driest On Turbulent Flow Near a Wall , 1956 .