Numerical analysis of a finite element projection-based VMS turbulence model with wall laws
暂无分享,去创建一个
Macarena Gómez Mármol | Samuele Rubino | Tomás Chacón Rebollo | T. C. Rebollo | S. Rubino | M. G. Mármol
[1] P. Moin,et al. Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow , 1994 .
[2] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[3] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[4] T. Kármán,et al. Mechanische Ahnlichkeit und Turbulenz , 1930 .
[5] R. Codina. Comparison of some finite element methods for solving the diffusion-convection-reaction equation , 1998 .
[6] T. Hughes,et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .
[7] R. Codina. A stabilized finite element method for generalized stationary incompressible flows , 2001 .
[8] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[9] Volker John,et al. Numerical Studies of Finite Element Variational Multiscale Methods for Turbulent Flow Simulations , 2010 .
[10] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[11] Tomás Chacón Rebollo. A term by term stabilization algorithm for finite element solution of incompressible flow problems , 1998 .
[12] I. Akkerman. Adaptive Variational Multiscale Formulations using the Discrete Germano , 2007 .
[13] T. Hughes,et al. Large Eddy Simulation and the variational multiscale method , 2000 .
[14] Jacques Rappaz,et al. Finite Dimensional Approximation of Non-Linear Problems .1. Branches of Nonsingular Solutions , 1980 .
[15] Thomas J. R. Hughes,et al. The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .
[16] Vivette Girault,et al. A high order term-by-term stabilization solver for incompressible flow problems , 2013 .
[17] Victor M. Calo,et al. Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .
[18] Thierry Dubois,et al. Dynamic multilevel methods and the numerical simulation of turbulence , 1999 .
[19] Tomás Chacón Rebollo. An analysis technique for stabilized finite element solution of incompressible flows , 2001 .
[20] Frédéric Hecht,et al. Numerical approximation of the Smagorinsky turbulence model applied to the primitive equations of the ocean , 2014, Math. Comput. Simul..
[21] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .
[22] R. Verfürth. Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .
[23] P. Moin,et al. Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.
[24] Erik Burman,et al. Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..
[25] Santiago Badia,et al. Dissipative Structure and Long Term Behavior of a Finite Element Approximation of Incompressible Flows with Numerical Subgrid Scale Modeling , 2010 .
[26] R. Verfürth. Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions , 1985 .
[27] Cornelius O. Horgan,et al. Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..
[28] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[29] Volker John,et al. On large Eddy simulation and variational multiscale methods in the numerical simulation of turbulent incompressible flows , 2006 .
[30] Carlos Paré,et al. Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids , 1992 .
[31] L. Berselli,et al. Mathematics of Large Eddy Simulation of Turbulent Flows , 2005 .
[32] J. Deardorff. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.
[33] Roger Lewandowski,et al. Mathematical and Numerical Foundations of Turbulence Models and Applications , 2014 .
[34] F. Brezzi,et al. Finite Dimensional Approximation of Non-Linear Problems .3. Simple Bifurcation Points , 1981 .
[35] J. Smagorinsky,et al. GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .
[36] Erik Burman,et al. Interior penalty variational multiscale method for the incompressible Navier-Stokes equation: Monitoring artificial dissipation , 2007 .
[37] L. Prandtl. 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1925 .
[38] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[39] T. Chacón Rebollo,et al. Numerical Analysis of Penalty Stabilized Finite Element Discretizations of Evolution Navier–Stokes Equations , 2015, J. Sci. Comput..
[40] P. Moin,et al. Numerical investigation of turbulent channel flow , 1981, Journal of Fluid Mechanics.
[41] Christine Bernardi,et al. Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .
[42] CHRISTINE BERNARDI,et al. Finite element discretization of the Stokes and Navier – Stokes equations with boundary conditions on the pressure by , 2014 .
[43] D. Spalding. A Single Formula for the “Law of the Wall” , 1961 .
[44] T. C. Rebollo,et al. A variational finite element model for large-eddy simulations of turbulent flows , 2013, 1302.2753.
[45] Volker Gravemeier,et al. Scale-separating operators for variational multiscale large eddy simulation of turbulent flows , 2006, J. Comput. Phys..
[46] Thomas J. R. Hughes,et al. Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .
[47] F. Brezzi,et al. Finite dimensional approximation of nonlinear problems , 1981 .
[48] Volker John,et al. A Finite Element Variational Multiscale Method for the Navier-Stokes Equations , 2005, SIAM J. Sci. Comput..
[49] P. Fischer,et al. Large eddy simulation of turbulent channel flows by the rational large eddy simulation model , 2002 .
[50] Li-Bin Liu,et al. A Robust Adaptive Grid Method for a System of Two Singularly Perturbed Convection-Diffusion Equations with Weak Coupling , 2014, J. Sci. Comput..
[51] F. Brezzi,et al. Finite dimensional approximation of nonlinear problems , 1981 .
[52] T. Hughes,et al. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .
[53] Volker John,et al. Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity , 2008 .
[54] John Kim,et al. DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .
[55] E. R. V. Driest. On Turbulent Flow Near a Wall , 1956 .