Multisensory 360° Videos Under Varying Resolution Levels Enhance Presence

Omnidirectional videos have become a leading multimedia format for Virtual Reality applications. While live 360<inline-formula><tex-math notation="LaTeX">$^\circ$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mo>∘</mml:mo></mml:msup></mml:math><inline-graphic xlink:href="covaci-ieq2-3140875.gif"/></alternatives></inline-formula> videos offer a unique immersive experience, streaming of omnidirectional content at high resolutions is not always feasible in bandwidth-limited networks. While in the case of flat videos, scaling to lower resolutions works well, 360<inline-formula><tex-math notation="LaTeX">$^\circ$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mo>∘</mml:mo></mml:msup></mml:math><inline-graphic xlink:href="covaci-ieq3-3140875.gif"/></alternatives></inline-formula> video quality is seriously degraded because of the viewing distances involved in head-mounted displays. Hence, in this article, we investigate first how quality degradation impacts the sense of presence in immersive Virtual Reality applications. Then, we are pushing the boundaries of 360<inline-formula><tex-math notation="LaTeX">$^\circ$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mo>∘</mml:mo></mml:msup></mml:math><inline-graphic xlink:href="covaci-ieq4-3140875.gif"/></alternatives></inline-formula> technology through the enhancement with multisensory stimuli. 48 participants experimented both 360<inline-formula><tex-math notation="LaTeX">$^\circ$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mo>∘</mml:mo></mml:msup></mml:math><inline-graphic xlink:href="covaci-ieq5-3140875.gif"/></alternatives></inline-formula> scenarios (with and without multisensory content), while they were divided randomly between four conditions characterised by different encoding qualities (HD, FullHD, 2.5K, 4K). The results showed that presence is not mediated by streaming at a higher bitrate. The trend we identified revealed however that presence is positively and significantly impacted by the enhancement with multisensory content. This shows that multisensory technology is crucial in creating more immersive experiences.

[1]  Miguel Melo,et al.  Impact of Different Sensory Stimuli on Presence in Credible Virtual Environments , 2020, IEEE Transactions on Visualization and Computer Graphics.

[2]  Shienny Karwita Tailan,et al.  Exploring the Use of Olfactory Stimuli Towards Reducing Visually Induced Motion Sickness in Virtual Reality , 2020, SUI.

[3]  Ernst Kruijff,et al.  FaceHaptics: Robot Arm based Versatile Facial Haptics for Immersive Environments , 2020, CHI.

[4]  Celso A. S. Santos,et al.  Do I Smell Coffee? The Tale of a 360° Mulsemedia Experience , 2020, IEEE MultiMedia.

[5]  Marcio Carneiro dos Santos,et al.  Narrativas e desenvolvimento de conteúdo imersivo: aplicação de sistemas bi e multissensoriais de realidade virtual no jornalismo , 2019 .

[6]  Celso A. S. Santos,et al.  360° Mulsemedia: A Way to Improve Subjective QoE in 360° Videos , 2019, ACM Multimedia.

[7]  Simone Diniz Junqueira Barbosa,et al.  Subjective Evaluation of 360-degree Sensory Experiences , 2019, 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP).

[8]  Celso A. S. Santos,et al.  A mulsemedia framework for delivering sensory effects to heterogeneous systems , 2019, Multimedia Systems.

[9]  Niels Henze,et al.  Using Presence Questionnaires in Virtual Reality , 2019, CHI.

[10]  Ashutosh Singla,et al.  Assessing Media QoE, Simulator Sickness and Presence for Omnidirectional Videos with Different Test Protocols , 2019, 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR).

[11]  Klara Nahrstedt,et al.  Scalable 360° Video Stream Delivery: Challenges, Solutions, and Opportunities , 2019, Proceedings of the IEEE.

[12]  L. De Marez,et al.  360° Video Journalism: Experimental Study on the Effect of Immersion on News Experience and Distant Suffering , 2019, Journalism Studies.

[13]  Gabriel-Miro Muntean,et al.  Is Multimedia Multisensorial? - A Review of Mulsemedia Systems , 2018, ACM Comput. Surv..

[14]  Markus Fiedler,et al.  A Glance at the Dagstuhl Manifesto ‘QoE Vadis?’ , 2018, 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX).

[15]  Ellen Yi-Luen Do,et al.  Season Traveller: Multisensory Narration for Enhancing the Virtual Reality Experience , 2018, CHI.

[16]  Feng Qian,et al.  360° Innovations for Panoramic Video Streaming , 2017, HotNets.

[17]  C. Timmerer,et al.  Subjective Evaluation of an Olfaction Enhanced Immersive Virtual Reality Environment , 2017, AltMM@MM.

[18]  Zhimin Xu,et al.  360ProbDASH: Improving QoE of 360 Video Streaming Using Tile-based HTTP Adaptive Streaming , 2017, ACM Multimedia.

[19]  Truong Cong Thang,et al.  A subjective study on QoE of 360 video for VR communication , 2017, 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP).

[20]  Mai Xu,et al.  Assessing Visual Quality of Omnidirectional Videos , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[21]  Sarah Jones,et al.  Disrupting the narrative: immersive journalism in virtual reality , 2017 .

[22]  Zhenhua Li,et al.  A Measurement Study of Oculus 360 Degree Video Streaming , 2017, MMSys.

[23]  Christian Timmerer,et al.  Towards subjective quality of experience assessment for omnidirectional video streaming , 2017, 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX).

[24]  Gabriel-Miro Muntean,et al.  Olfactory-enhanced multimedia video clips datasets , 2017, 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX).

[25]  Qian Liu,et al.  QoE in Video Transmission: A User Experience-Driven Strategy , 2017, IEEE Communications Surveys & Tutorials.

[26]  Mel Slater,et al.  Enhancing Our Lives with Immersive Virtual Reality , 2016, Front. Robot. AI.

[27]  Cornelius Hellge,et al.  Tile Based HEVC Video for Head Mounted Displays , 2016, 2016 IEEE International Symposium on Multimedia (ISM).

[28]  Xin Liu,et al.  Shooting a moving target: Motion-prediction-based transmission for 360-degree videos , 2016, 2016 IEEE International Conference on Big Data (Big Data).

[29]  Federica Battisti,et al.  Impact of video content and transmission impairments on quality of experience , 2016, Multimedia Tools and Applications.

[30]  Miska M. Hannuksela,et al.  HEVC-compliant Tile-based Streaming of Panoramic Video for Virtual Reality Applications , 2016, ACM Multimedia.

[31]  Mohammad Hosseini,et al.  Adaptive 360 VR Video Streaming: Divide and Conquer , 2016, 2016 IEEE International Symposium on Multimedia (ISM).

[32]  Gabriel-Miro Muntean,et al.  Audio Masking Effect on Inter-Component Skews in Olfaction-Enhanced Multimedia Presentations , 2016, ACM Trans. Multim. Comput. Commun. Appl..

[33]  Jason Jerald,et al.  The VR Book: Human-Centered Design for Virtual Reality , 2015 .

[34]  Touradj Ebrahimi,et al.  Toward a New Assessment of Quality , 2015, Computer.

[35]  Gabriel-Miro Muntean,et al.  User Quality of Experience of Mulsemedia Applications , 2014, TOMM.

[36]  Weisi Lin,et al.  Mulsemedia: State of the Art, Perspectives, and Challenges , 2014, TOMM.

[37]  Gabriel-Miro Muntean,et al.  Quality of experience study for multiple sensorial media delivery , 2014, 2014 International Wireless Communications and Mobile Computing Conference (IWCMC).

[38]  Gabriel-Miro Muntean,et al.  Age and gender influence on perceived olfactory & visual media synchronization , 2013, 2013 IEEE International Conference on Multimedia and Expo (ICME).

[39]  George Ghinea,et al.  Information recall task impact in olfaction-enhanced multimedia , 2013, TOMCCAP.

[40]  Peter Schelkens,et al.  Qualinet White Paper on Definitions of Quality of Experience , 2013 .

[41]  Yasushi Ikei,et al.  A multisensory VR system exploring the ultra-reality , 2012, 2012 18th International Conference on Virtual Systems and Multimedia.

[42]  Mariano Alcañiz Raya,et al.  A Neuroscience Approach to Virtual Reality Experience Using Transcranial Doppler Monitoring , 2009, PRESENCE: Teleoperators and Virtual Environments.

[43]  Aleksander Väljamäe,et al.  Self-motion and Presence in the Perceptual Optimization of a Multisensory Virtual Reality Environment , 2005 .

[44]  M. Whitton,et al.  Review of Four Studies on the Use of Physiological Reaction as a Measure of Presence in StressfulVirtual Environments , 2005, Applied psychophysiology and biofeedback.

[45]  Mel Slater,et al.  How Colorful Was Your Day? Why Questionnaires Cannot Assess Presence in Virtual Environments , 2004, Presence: Teleoperators & Virtual Environments.

[46]  Michael Meehan,et al.  Physiological measures of presence in stressful virtual environments , 2002, SIGGRAPH.

[47]  Mel Slater,et al.  Using Presence Questionnaires in Reality , 2000, Presence: Teleoperators & Virtual Environments.

[48]  Mel Slater,et al.  Measuring Presence: A Response to the Witmer and Singer Presence Questionnaire , 1999, Presence.

[49]  Neff Walker,et al.  Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments , 1999, Proceedings IEEE Virtual Reality (Cat. No. 99CB36316).

[50]  Michael J. Singer,et al.  Measuring Presence in Virtual Environments: A Presence Questionnaire , 1998, Presence.

[51]  George Ghinea,et al.  The sweet smell of success: Enhancing multimedia applications with olfaction , 2012, TOMCCAP.

[52]  In-Young Kim,et al.  10 An Investigation into Physiological Responses in Virtual Environments: An Objective Measurement of Presence , 2003 .