Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel

[1]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[2]  S. Scott,et al.  Coupled reaction-diffusion waves in an isothermal autocatalytic chemical system , 1993 .

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  S. Liao,et al.  Beyond Perturbation: Introduction to the Homotopy Analysis Method , 2003 .

[5]  Shijun Liao,et al.  On the homotopy analysis method for nonlinear problems , 2004, Appl. Math. Comput..

[6]  Shijun Liao,et al.  Comparison between the homotopy analysis method and homotopy perturbation method , 2005, Appl. Math. Comput..

[7]  K. Tsuboi,et al.  An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method , 2007 .

[8]  S. Liao An optimal homotopy-analysis approach for strongly nonlinear differential equations , 2010 .

[9]  S. Abbasbandy,et al.  Predictor homotopy analysis method and its application to some nonlinear problems , 2011 .

[10]  Shyam L. Kalla,et al.  On fractional partial differential equations related to quantum mechanics , 2011 .

[11]  An Efficient Numerical Method for Solving Linear and Nonlinear Partial Differential Equations by Combining Homotopy Analysis and Transform Method , 2011 .

[12]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[13]  M. El-Tawil,et al.  THE Q-HOMOTOPY ANALYSIS METHOD (Q-HAM) , 2012 .

[14]  Saeid Abbasbandy,et al.  Determination of optimal convergence-control parameter value in homotopy analysis method , 2013, Numerical Algorithms.

[15]  S. Grace,et al.  The Optimal q-Homotopy Analysis Method (Oq-HAM) , 2013, BIOINFORMATICS 2013.

[16]  Sunil Dutt Purohit Solutions of Fractional Partial Differential Equations of Quantum Mechanics , 2013 .

[17]  O. Iyiola Q-HOMOTOPY ANALYSIS METHOD AND APPLICATION TO FINGERO-IMBIBITION PHENOMENA IN DOUBLE PHASE FLOW THROUGH POROUS MEDIA , 2013 .

[18]  S. Abo‐Dahab,et al.  A One Step Optimal Homotopy Analysis Method for Propagation of Harmonic Waves in Nonlinear Generalized Magnetothermoelasticity with Two Relaxation Times under Influence of Rotation , 2013 .

[19]  Badr Saad T. Alkahtani,et al.  New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative , 2015, Arabian Journal of Geosciences.

[20]  Abdon Atangana,et al.  On Generalized Fractional Kinetic Equations Involving Generalized Bessel Function of the First Kind , 2015 .

[21]  Abdon Atangana,et al.  Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel , 2015 .

[22]  Badr Saad T. Alkahtani,et al.  Analysis of the Keller-Segel Model with a Fractional Derivative without Singular Kernel , 2015, Entropy.

[23]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[24]  Abdon Atangana,et al.  On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation , 2016, Appl. Math. Comput..

[25]  A. Alsaedi,et al.  On Coupled Systems of Time-Fractional Differential Problems by Using a New Fractional Derivative , 2016 .

[26]  Obaid J. Algahtani,et al.  Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model , 2016 .

[27]  K. Nisar,et al.  Generalized fractional kinetic equations involving generalized Struve function of the first kind , 2016 .

[28]  Y. S. Hamed,et al.  Solving the convection–diffusion equation by means of the optimal q-homotopy analysis method (Oq-HAM) , 2016 .

[29]  José Francisco Gómez-Aguilar,et al.  Modeling diffusive transport with a fractional derivative without singular kernel , 2016 .

[30]  Devendra Kumar,et al.  Numerical solution of time- and space-fractional coupled Burgers’ equations via homotopy algorithm , 2016 .

[31]  Abdon Atangana,et al.  A new nonlinear triadic model of predator–prey based on derivative with non-local and non-singular kernel , 2016 .

[32]  Ilknur Koca,et al.  Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order , 2016 .

[33]  Xiao-Jun Yang,et al.  General fractional calculus operators containing the generalized Mittag-Leffler functions applied to anomalous relaxation , 2017 .

[34]  José Francisco Gómez-Aguilar,et al.  Space–time fractional diffusion equation using a derivative with nonsingular and regular kernel , 2017 .

[35]  Sunil Kumar,et al.  An efficient computational approach for time-fractional Rosenau–Hyman equation , 2017, Neural Computing and Applications.

[36]  Abdon Atangana,et al.  Model of Thin Viscous Fluid Sheet Flow within the Scope of Fractional Calculus: Fractional Derivative with and No Singular Kernel , 2017, Fundam. Informaticae.

[37]  E. K. Lenzi,et al.  The Role of Fractional Time-Derivative Operators on Anomalous Diffusion , 2017, Front. Phys..

[38]  K. Saad,et al.  Optimal q-homotopy analysis method for time-space fractional gas dynamics equation , 2017 .

[39]  Ilknur Koca,et al.  Analysis of rubella disease model with non-local and non-singular fractional derivatives , 2017 .

[40]  Devendra Kumar,et al.  A new analysis for fractional model of regularized long‐wave equation arising in ion acoustic plasma waves , 2017 .

[41]  Syed Tauseef Mohyud-Din,et al.  On linear viscoelasticity within general fractional derivatives without singular kernel , 2017 .

[42]  Asifa Tassaddiq,et al.  Atangana-Baleanu and Caputo Fabrizio Analysis of Fractional Derivatives for Heat and Mass Transfer of Second Grade Fluids over a Vertical Plate: A Comparative Study , 2017, Entropy.

[43]  Hari M. Srivastava,et al.  General fractional-order anomalous diffusion with non-singular power-law kernel , 2017 .

[44]  Devendra Kumar,et al.  An efficient analytical technique for fractional model of vibration equation , 2017 .

[45]  Dumitru Baleanu,et al.  Relaxation and diffusion models with non-singular kernels , 2017 .

[46]  D. Vieru,et al.  Modeling electro-magneto-hydrodynamic thermo-fluidic transport of biofluids with new trend of fractional derivative without singular kernel , 2017 .

[47]  Abdon Atangana,et al.  Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Fabrizio and Atangana-Baleanu fractional derivatives , 2017 .

[48]  S. Manjarekar,et al.  Generalized Elzaki – Tarig Transformation and its Applications to New Fractional Derivative with Non Singular Kernel , 2017 .

[49]  José Francisco Gómez-Aguilar,et al.  Irving–Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel , 2017 .

[50]  A. Atangana,et al.  Analysis of a new model of H1N1 spread: Model obtained via Mittag-Leffler function , 2017 .

[51]  K. Saad,et al.  New fractional derivatives applied to the Korteweg–de Vries and Korteweg–de Vries–Burger’s equations , 2018 .

[52]  J. F. Gómez‐Aguilar,et al.  Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena , 2018 .

[53]  Khaled M. Saad,et al.  Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: Fractional cubic isothermal auto-catalytic chemical system , 2018 .

[54]  José Francisco Gómez-Aguilar,et al.  A numerical solution for a variable-order reaction–diffusion model by using fractional derivatives with non-local and non-singular kernel , 2018 .

[55]  Dumitru Baleanu,et al.  Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel , 2018 .

[56]  Abdon Atangana,et al.  Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties , 2018, Physica A: Statistical Mechanics and its Applications.