Halogenases: powerful tools for biocatalysis (mechanisms applications and scope).

[1]  Hai Deng,et al.  Enzymatic fluorination and biotechnological developments of the fluorinase. , 2015, Chemical reviews.

[2]  L. C. Blasiak,et al.  Structural Perspective on Enzymatic Halogenation , 2008, Accounts of chemical research.

[3]  Jia Zeng,et al.  A Novel Fungal Flavin‐Dependent Halogenase for Natural Product Biosynthesis , 2010, Chembiochem : a European journal of chemical biology.

[4]  Xiaoxue Tong,et al.  Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo , 2017, Nature Communications.

[5]  D. Lenoir,et al.  Oxidation Numbers, Oxidants, and Redox Reactions: Variants of the Electrophilic Bromination of Alkenes and Variants of the Application of Oxone , 2011 .

[6]  J. Hamilton,et al.  Biochemistry: Biosynthesis of an organofluorine molecule , 2002, Nature.

[7]  A. Windhorst,et al.  Tumour imaging by Positron Emission Tomography using fluorinase generated 5-[¹⁸F]fluoro-5-deoxyribose as a novel tracer. , 2013, Nuclear medicine and biology.

[8]  Jason Micklefield,et al.  Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C–H activation , 2016, Nature Communications.

[9]  D. O'Hagan,et al.  Fluorine-containing natural products , 1999 .

[10]  L. Prade,et al.  Implications for the Catalytic Mechanism of the Vanadium-Containing Enzyme Chloroperoxidase from the Fungus Curvularia inaequalis by X-Ray Structures of the Native and Peroxide Form , 1997, Biological chemistry.

[11]  T. Luft,et al.  Clorobiocin biosynthesis in Streptomyces: identification of the halogenase and generation of structural analogs. , 2003, Chemistry & biology.

[12]  R. Filler,et al.  Recent Advances in the Biomedicinal Chemistry of Fluorine-Containing Compounds , 1996 .

[13]  S. O’Connor,et al.  Diversification of monoterpene indole alkaloid analogs through cross-coupling. , 2013, Organic letters.

[14]  J. Micklefield,et al.  RadH: A Versatile Halogenase for Integration into Synthetic Pathways , 2017, Angewandte Chemie.

[15]  M. L. Hillwig,et al.  A new family of iron-dependent halogenases acts on freestanding substrates. , 2014, Nature chemical biology.

[16]  W. Gerwick,et al.  The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. , 2002, Gene.

[17]  T. Poulos,et al.  The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid. , 1995, Structure.

[18]  A. Uria,et al.  An Unusual Flavin-Dependent Halogenase from the Metagenome of the Marine Sponge Theonella swinhoei WA. , 2017, ACS chemical biology.

[19]  T. Poulos,et al.  Stereochemistry of the chloroperoxidase active site: crystallographic and molecular-modeling studies. , 1998, Chemistry & biology.

[20]  M. Schorn,et al.  Biosynthesis of polybrominated aromatic organic compounds by marine bacteria , 2014, Nature chemical biology.

[21]  Gordon W. Gribble,et al.  Naturally Occurring Organohalogen Compounds , 1998 .

[22]  C. Walsh,et al.  SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Xudong Qu,et al.  Integrating Carbon-Halogen Bond Formation into Medicinal Plant Metabolism , 2010, Nature.

[24]  S. Lam,et al.  Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin , 1997, Applied and environmental microbiology.

[25]  S. Garneau‐Tsodikova,et al.  Crystal structure of halogenase PltA from the pyoluteorin biosynthetic pathway. , 2015, Journal of structural biology.

[26]  L. Hager,et al.  AN ENZYMATIC CHLORINATION REACTION , 1959 .

[27]  Xiaofeng Zhu,et al.  New insights into the mechanism of enzymatic chlorination of tryptophan. , 2008, Angewandte Chemie.

[28]  M. Frese,et al.  A High-Throughput Fluorescence Assay to Determine the Activity of Tryptophan Halogenases. , 2016, Angewandte Chemie.

[29]  G. Gribble Biological Activity of Recently Discovered Halogenated Marine Natural Products , 2015, Marine drugs.

[30]  T. Poulos Heme enzyme structure and function. , 2014, Chemical reviews.

[31]  K. van Pée,et al.  Specific Enzymatic Halogenation-From the Discovery of Halogenated Enzymes to Their Applications In Vitro and In Vivo. , 2016, Angewandte Chemie.

[32]  Benjamin W. Thuronyi,et al.  Expanding the Fluorine Chemistry of Living Systems Using Engineered Polyketide Synthase Pathways , 2013, Science.

[33]  Sascha Keller,et al.  Purification and Partial Characterization of Tryptophan 7-Halogenase (PrnA) from Pseudomonas fluorescens , 2000 .

[34]  R. Goss,et al.  Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. , 2010, Journal of the American Chemical Society.

[35]  Norbert Sewald,et al.  Enzymatic halogenation of tryptophan on a gram scale. , 2015, Angewandte Chemie.

[36]  P. Carayon,et al.  Structural and functional aspects of thyroid peroxidase. , 2006, Archives of biochemistry and biophysics.

[37]  Xiaofeng Zhu,et al.  Mechanism of enzymatic fluorination in Streptomyces cattleya. , 2007, Journal of the American Chemical Society.

[38]  A. Kotzsch,et al.  A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. , 2005, Chemistry & biology.

[39]  Z. Jia,et al.  Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. , 2010, Journal of molecular biology.

[40]  M. Winn,et al.  Development of fluorescent aryltryptophans by Pd mediated cross-coupling of unprotected halotryptophans in water. , 2008, Chemical communications.

[41]  S. O’Connor,et al.  Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. , 2011, Journal of the American Chemical Society.

[42]  J. Naismith,et al.  Tryptophan 7-Halogenase (PrnA) Structure Suggests a Mechanism for Regioselective Chlorination , 2005, Science.

[43]  Weiliang Zhu,et al.  Halogen Bond: Its Role beyond Drug-Target Binding Affinity for Drug Discovery and Development , 2014, J. Chem. Inf. Model..

[44]  C. Walsh,et al.  Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis , 2006, Nature.

[45]  K. Arima,et al.  Pyrrolnitrin , a New Antibiotic Substance , Produced by Pseudomonas , 2007 .

[46]  Directed evolution of RebH for catalyst-controlled halogenation of indole C–H bonds† †Electronic supplementary information (ESI) available: Complete experimental procedures and characterization are supplied as supporting information. See DOI: 10.1039/c5sc04680g , 2016, Chemical science.

[47]  M. Hasegawa,et al.  Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. , 1995, Bioscience, biotechnology, and biochemistry.

[48]  Catherine B. Poor,et al.  Directed evolution of RebH for site-selective halogenation of large biologically active molecules. , 2015, Angewandte Chemie.

[49]  M. L. Hillwig,et al.  Aliphatic Halogenase Enables Late‐Stage C−H Functionalization: Selective Synthesis of a Brominated Fischerindole Alkaloid with Enhanced Antibacterial Activity , 2016, Chembiochem : a European journal of chemical biology.

[50]  M. L. Hillwig,et al.  Structural basis for halogenation by iron- and 2-oxo-glutarate-dependent enzyme WelO5 , 2016, Nature chemical biology.

[51]  Bradley S. Moore,et al.  A stereoselective vanadium-dependent chloroperoxidase in bacterial antibiotic biosynthesis. , 2011, Journal of the American Chemical Society.

[52]  C. Walsh,et al.  Halogenation strategies in natural product biosynthesis. , 2008, Chemistry & biology.

[53]  Xinyu Liu,et al.  Characterization of non-heme iron aliphatic halogenase WelO5* from Hapalosiphon welwitschii IC-52-3: Identification of a minimal protein sequence motif that confers enzymatic chlorination specificity in the biosynthesis of welwitindolelinones , 2017, Beilstein journal of organic chemistry.

[54]  C. Walsh,et al.  Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2 , 2009, Proceedings of the National Academy of Sciences.

[55]  M. Zanda,et al.  Last-Step Enzymatic [(18) F]-Fluorination of Cysteine-Tethered RGD Peptides Using Modified Barbas Linkers. , 2016, Chemistry.

[56]  M. Schorn,et al.  Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase–thioesterase enzyme pair , 2016, Proceedings of the National Academy of Sciences.

[57]  J. Micklefield,et al.  Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes. , 2016, Organic & biomolecular chemistry.

[58]  B. Entsch,et al.  Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. , 2005, Biochemical and biophysical research communications.

[59]  R. Goss,et al.  Access to High Value Natural and Unnatural Products through Hyphenating Chemical Synthesis and Biosynthesis , 2014, Synthesis.

[60]  D. Lenoir,et al.  Electrophilic bromination of alkenes: environmental, health and safety aspects of new alternative methods. , 2008, Chemistry.

[61]  Peter Jeschke,et al.  The unique role of halogen substituents in the design of modern agrochemicals. , 2010, Pest management science.

[62]  J. Naismith,et al.  Crystal structure and mechanism of a bacterial fluorinating enzyme , 2004, Nature.

[63]  Sean J. Johnson,et al.  Specific chlorination of isoquinolines by a fungal flavin-dependent halogenase. , 2013, Bioorganic & medicinal chemistry letters.

[64]  B. Ondruschka,et al.  Aromatic substitution in ball mills: formation of aryl chlorides and bromides using potassium peroxomonosulfate and NaX , 2012 .

[65]  K. Nicolaou,et al.  Chemistry and Biology of the Enediyne Anticancer Antibiotics , 1991 .

[66]  J. Rohr,et al.  Combinatorial biosynthesis of antitumor indolocarbazole compounds. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Xiaofeng Zhu,et al.  Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. , 2009, Journal of molecular biology.

[68]  M. L. Hillwig,et al.  Discovery of a Promiscuous Non-Heme Iron Halogenase in Ambiguine Alkaloid Biogenesis: Implication for an Evolvable Enzyme Family for Late-Stage Halogenation of Aliphatic Carbons in Small Molecules. , 2016, Angewandte Chemie.

[69]  G. Schulz,et al.  Structure and action of the myxobacterial chondrochloren halogenase CndH: a new variant of FAD-dependent halogenases. , 2009, Journal of molecular biology.

[70]  Bradley S. Moore,et al.  Engineering fluorometabolite production: fluorinase expression in Salinispora tropica Yields Fluorosalinosporamide. , 2010, Journal of natural products.

[71]  D. Williams,et al.  Calicheamicins, a novel family of antitumor antibiotics. 3. Isolation, purification and characterization of calicheamicins beta 1Br, gamma 1Br, alpha 2I, alpha 3I, beta 1I, gamma 1I and delta 1I. , 1989, The Journal of antibiotics.