Fractional Burgers equation with nonlinear non-locality: Spectral vanishing viscosity and local discontinuous Galerkin methods

We consider the viscous Burgers equation with a fractional nonlinear term as a model involving non-local nonlinearities in conservation laws, which, surprisingly, has an analytical solution obtained by a fractional extension of the HopfCole transformation. We use this model and its inviscid limit to develop stable spectral and discontinuous Galerkin spectral element methods by employing the concept of spectral vanishing viscosity (SVV). For the global spectral method, SVV is very effective and the computational cost is O(N2), which is essentially the same as for the standard Burgers equation. We also develop a local discontinuous Galerkin (LDG) spectral element method to improve the accuracy around discontinuities, and we again stabilize the LDG method with the SVV operator. Finally, we solve numerically the inviscid fractional Burgers equation both with the spectral and the spectral element LDG methods. We study systematically the stability and convergence of both methods and determine the effectiveness of each method for different parameters.

[1]  W. Woyczynski Lévy Processes in the Physical Sciences , 2001 .

[2]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .

[3]  W. Woyczynski,et al.  Fractal Burgers Equations , 1998 .

[4]  George Em Karniadakis,et al.  A discontinuous Galerkin method for the Navier-Stokes equations , 1999 .

[5]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[6]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[7]  Simone Cifani,et al.  On the spectral vanishing viscosity method for periodic fractional conservation laws , 2010, Math. Comput..

[8]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[9]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[10]  Jan S. Hesthaven,et al.  Discontinuous Galerkin Method for Fractional Convection-Diffusion Equations , 2013, SIAM J. Numer. Anal..

[11]  Jie Shen,et al.  Spectral Methods: Algorithms, Analysis and Applications , 2011 .

[12]  Heping Ma,et al.  Chebyshev--Legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws , 1998 .

[13]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[14]  N. SIAMJ.,et al.  CHEBYSHEV – LEGENDRE SPECTRAL VISCOSITY METHOD FOR NONLINEAR CONSERVATION LAWS , 1998 .

[15]  Wai Sun Don Numerical study of pseudospectral methods in shock wave applications , 1994 .

[16]  P. Clavin Instabilities and Nonlinear Patterns of Overdriven Detonations in Gases , 2002 .

[17]  Xuan Zhao,et al.  Second-order approximations for variable order fractional derivatives: Algorithms and applications , 2015, J. Comput. Phys..

[18]  Gui-Qiang G. Chen,et al.  Spectral Viscosity Approximations to Multidimensional Scalar Conservation Laws , 1993 .

[19]  J. Hesthaven,et al.  Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .

[20]  S. Sherwin,et al.  STABILISATION OF SPECTRAL/HP ELEMENT METHODS THROUGH SPECTRAL VANISHING VISCOSITY: APPLICATION TO FLUID MECHANICS MODELLING , 2006 .

[21]  Nathael Alibaud,et al.  Non-uniqueness of weak solutions for the fractal Burgers equation , 2009, 0907.3695.

[22]  Ben-yu Guo,et al.  Spectral Vanishing Viscosity Method For Nonlinear Conservation Laws , 2001, SIAM J. Numer. Anal..

[23]  Richard Askey,et al.  INTEGRAL REPRESENTATIONS FOR JACOBI POLYNOMIALS AND SOME APPLICATIONS. , 1969 .

[24]  J. Vovelle,et al.  OCCURRENCE AND NON-APPEARANCE OF SHOCKS IN FRACTAL BURGERS EQUATIONS , 2007 .

[25]  Chuanju Xu,et al.  Stabilized spectral element computations of high Reynolds number incompressible flows , 2004 .

[26]  Qiang Du,et al.  A New Approach for a Nonlocal, Nonlinear Conservation Law , 2012, SIAM J. Appl. Math..

[27]  Wojbor A. Woyczyński,et al.  Interacting Particle Approximation for Fractal Burgers Equation , 1998 .

[28]  Nobumasa Sugimoto Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves , 1991, Journal of Fluid Mechanics.

[29]  Qi Wang,et al.  Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method , 2006, Appl. Math. Comput..

[30]  Weihua Deng,et al.  Local discontinuous Galerkin methods for fractional ordinary differential equations , 2015 .

[31]  Eitan Tadmor,et al.  Legendre pseudospectral viscosity method for nonlinear conservation laws , 1993 .

[32]  Nathael Alibaud,et al.  Asymptotic Properties of Entropy Solutions to Fractal Burgers Equation , 2009, SIAM J. Math. Anal..

[33]  A Generalization of the Hopf-Cole Transformation , 2012, 1302.6000.

[34]  E. Jakobsen,et al.  The discontinuous Galerkin method for fractional degenerate convection-diffusion equations , 2010, 1005.1507.

[35]  E. Tadmor,et al.  Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .

[36]  E. Jakobsen,et al.  The discontinuous Galerkin method for fractal conservation laws , 2009, 0906.1092.

[37]  George E. Karniadakis,et al.  Discontinuous Spectral Element Methods for Time- and Space-Fractional Advection Equations , 2014, SIAM J. Sci. Comput..

[38]  Xiaojing Xu,et al.  On Convergence of Solutions of Fractal Burgers Equation toward Rarefaction Waves , 2008, SIAM J. Math. Anal..