Updated Design of the CMB Polarization Experiment Satellite LiteBIRD

Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/ f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun–Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.

Edward J. Wollack | R. B. Barreiro | G. Jaehnig | F. Grupp | C. Baccigalupi | J. Weller | G. Morgante | A. Taylor | R. G'enova-Santos | J. Rubino-Mart'in | N. Katayama | E. Hivon | A. Banday | A. Challinor | E. Komatsu | A. Kogut | A. Lee | P. Ade | J. Borrill | P. Bernardis | R. Stompor | K. Ganga | S. Masi | F. Piacentini | J. Austermann | J. Cliche | A. Cukierman | T. Haan | M. Dobbs | N. Halverson | G. Hilton | C. Kuo | G. Smecher | A. Suzuki | K. Thompson | C. Tucker | R. Hložek | T. Yoshida | Y. Kataoka | S. Henrot-Versillé | M. Hazumi | H. Ishino | T. Kawasaki | T. Kisner | E. Linder | H. Eriksen | Y. Sakurai | Y. Minami | Y. Murata | F. Boulanger | S. Uozumi | C. Dickinson | Y. Sekimoto | M. Brown | M. Bersanelli | F. Finelli | A. Gruppuso | D. Herranz | R. Keskitalo | B. Maffei | D. Maino | E. Mart'inez-Gonz'alez | A. Mennella | M. Migliaccio | P. Natoli | F. Noviello | L. Pagano | D. Paoletti | G. Patanchon | G. Polenta | M. Remazeilles | M. Sandri | G. Savini | D. Scott | M. Tomasi | M. Tristram | P. Vielva | F. Villa | N. Vittorio | I. Wehus | A. Zonca | E. Calabrese | J. Gudmundsson | M. Lattanzi | J. Murphy | N. Okada | N. Trappe | A. Ducout | A. Mangilli | H. Ohsaki | T. Kaga | K. Shinozaki | N. Yamasaki | M. Tsujimoto | P. Shirron | Y. Kobayashi | G. Pisano | K. Konishi | M. Kuwata-Gonokami | N. Kogiso | G. Puglisi | F. Columbro | M. Petris | L. Lamagna | C. O'sullivan | A. Paiella | F. Voisin | M. Zannoni | J. Aumont | C. Franceschet | M. Gradziel | L. Montier | D. Rambaud | S. Realini | A. Duivenvoorden | H. Takakura | S. Kashima | H. Imada | T. Hasebe | Y. Takeda | J. Ullom | R. Yamamoto | J. Yumoto | R. Flauger | H. Nishino | A. Kibayashi | T. Dotani | K. Ebisawa | L. Duband | P. Hargrave | J. Beall | E. Switzer | B. Winter | J. Hubmayr | D. Curtis | N. Kurinsky | B. Westbrook | K. Ishimura | K. Kimura | H. Ogawa | K. Kohri | H. Sugai | T. Essinger-Hileman | B. Sherwin | S. Basak | N. Krachmalnicoff | D. Molinari | M. Shiraishi | M. Vissers | S. Utsunomiya | S. Duff | J. Lanen | D. Alonso | K. Arnold | S. Beckman | Y. Chinone | J. Errard | M. Hasegawa | M. Hattori | C. Hill | D. Poletti | C. Raum | S. Takakura | B. Thorne | M. Jones | M. Maki | T. Matsumura | M. Bucher | R. Banerji | A. Buzzelli | I. Ohta | B. Mot | G. Roudil | H. Ochi | S. Stever | J. Duval | Y. Akiba | T. Elleflot | K. Ichiki | M. Nagai | R. Nagata | S. Nakamura | T. Namikawa | T. Nishibori | J. Gao | F. Casas | P. Danto | A. Kushino | M. Tsuji | G. Vermeulen | A. Gómez | G. Signorelli | J. Suzuki | U. Fuskeland | Tommaso Ghigna | I. Walker | J. Grain | T. Kikuchi | N. Watanabe | R. Takaku | K. Komatsu | R. Mathon | H. Enokida | Y. Terao | T. Iida | Y. Hirota | V. Chan | D. Hoang | K. Mistuda | S. Nerva | Y. Nomura | T. Prouv'e | M. Russell | H. Sakurai | P. Spizzi | S. Sugiyama | E. Taylor | H. Tomida | M. Yanagisawa

[1]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[2]  Katsuhiko Sato,et al.  First-order phase transition of a vacuum and the expansion of the Universe , 1981 .

[3]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[4]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[5]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[6]  H. K. Eriksen,et al.  Joint Bayesian Component Separation and CMB Power Spectrum Estimation , 2007, 0709.1058.

[7]  A. Catalano,et al.  Study of Cosmic Ray Impact on Planck/HFI Low Temperature Detectors , 2014, 1404.1305.

[8]  B. Maffei,et al.  Development of large radii half-wave plates for CMB satellite missions , 2014, Astronomical Telescopes and Instrumentation.

[9]  M. Remazeilles,et al.  Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions , 2015, 1509.04714.

[10]  G. Hilton,et al.  LiteBIRD: lite satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation detection , 2016, Astronomical Telescopes + Instrumentation.

[11]  Hajime Sugai,et al.  Trade-off studies on LiteBIRD reflectors , 2017, Optical Engineering + Applications.

[12]  Tomotake Matsumura,et al.  Bandpass mismatch error for satellite CMB experiments I: estimating the spurious signal , 2017, 1706.09486.

[13]  L. Duband,et al.  Concept design of the LiteBIRD satellite for CMB B-mode polarization , 2018, Astronomical Telescopes + Instrumentation.

[14]  Hajime Sugai,et al.  Wide field-of-view crossed Dragone optical system using anamorphic aspherical surfaces. , 2018, Applied optics.

[15]  Adrian T. Lee,et al.  Measurements of Tropospheric Ice Clouds with a Ground-based CMB Polarization Experiment, POLARBEAR , 2018, The Astrophysical Journal.

[16]  Hajime Sugai,et al.  The optical design and physical optics analysis of a cross-Dragonian telescope for LiteBIRD , 2018, Astronomical Telescopes + Instrumentation.

[17]  P. de Bernardis,et al.  Current design of the electrical architecture for the payload module of LiteBIRD , 2018, Astronomical Telescopes + Instrumentation.

[18]  Hajime Sugai,et al.  Thermal design utilizing radiative cooling for the payload module of LiteBIRD , 2018, Astronomical Telescopes + Instrumentation.

[19]  Tomotake Matsumura,et al.  Design and development of a polarization modulator unit based on a continuous rotating half-wave plate for LiteBIRD , 2018, Astronomical Telescopes + Instrumentation.

[20]  Tomotake Matsumura,et al.  Prototype design and evaluation of the nine-layer achromatic half-wave plate for the LiteBIRD low frequency telescope , 2018, Astronomical Telescopes + Instrumentation.

[21]  Paolo de Bernardis,et al.  A clamp and release system for superconducting magnetic bearings. , 2018, The Review of scientific instruments.

[22]  Amy N. Bender,et al.  Digital frequency multiplexing with sub-Kelvin SQUIDs , 2018, Astronomical Telescopes + Instrumentation.

[23]  P. A. R. Ade,et al.  The LiteBIRD Satellite Mission: Sub-Kelvin Instrument , 2018, Journal of Low Temperature Physics.

[24]  Y. Sekimoto,et al.  Far-Sidelobe Antenna Pattern Measurement of LiteBIRD Low Frequency Telescope in 1/4 Scale , 2019, IEEE Transactions on Terahertz Science and Technology.

[25]  P. A. R. Ade,et al.  LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection , 2019, Journal of Low Temperature Physics.

[26]  N. Katayama,et al.  Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles from CMB experiments , 2019, Progress of Theoretical and Experimental Physics.

[27]  N. Katayama,et al.  Delta-map method of removing CMB foregrounds with spatially varying spectra , 2018, Progress of Theoretical and Experimental Physics.

[28]  Adrian T. Lee,et al.  Commercially Fabricated Antenna-Coupled Transition Edge Sensor Bolometer Detectors for Next-Generation Cosmic Microwave Background Polarimetry Experiment , 2019, Journal of Low Temperature Physics.

[29]  Adrian T. Lee,et al.  Design of a Testbed for the Study of System Interference in Space CMB Polarimetry , 2019, Journal of Low Temperature Physics.