Realizing Superior Cycle Stability of a Ni‐Rich Layered LiNi 0.83 Co 0.12 Mn 0.05 O 2 Cathode with a B 2 O 3 Surface Modification

[1]  Yingjie Zhang,et al.  The role of boracic polyanion substitution on structure and high voltage electrochemical performance of Ni-Rich cathode materials for lithium ion batteries , 2019, Journal of Alloys and Compounds.

[2]  M. Inaba,et al.  Improvement of Cycleability and Rate‐Capability of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Materials Coated with Lithium Boron Oxide by an Antisolvent Precipitation Method , 2019, ChemistrySelect.

[3]  C. Yoon,et al.  Degradation Mechanism of Highly Ni-rich Li[NixCoyMn1-x-y]O2 Cathodes with x > 0.9. , 2019, ACS applied materials & interfaces.

[4]  Seong‐Hyeon Hong,et al.  The Role of Zr Doping in Stabilizing Li[Ni0.6 Co0.2 Mn0.2 ]O2 as a Cathode Material for Lithium-Ion Batteries. , 2019, ChemSusChem.

[5]  M. Winter,et al.  Surface Modification of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium-Ion Batteries. , 2019, ACS applied materials & interfaces.

[6]  Feng Wu,et al.  Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability , 2019, Nano Energy.

[7]  R. Mücke,et al.  Microstructure‐Controlled Ni‐Rich Cathode Material by Microscale Compositional Partition for Next‐Generation Electric Vehicles , 2019, Advanced Energy Materials.

[8]  Jie Zhu,et al.  Enhanced electrochemical performance of Li3PO4 modified Li[Ni0.8Co0.1Mn0.1]O2 cathode material via lithium-reactive coating , 2019, Journal of Alloys and Compounds.

[9]  Isaac Lund,et al.  The Effect of Electrode-Electrolyte Interface on the Electrochemical Impedance Spectra for Positive Electrode in Li-Ion Battery , 2018, Journal of The Electrochemical Society.

[10]  Zili Wu,et al.  Neutron Scattering Investigations of Hydride Species in Heterogeneous Catalysis. , 2018, ChemSusChem.

[11]  J. Janek,et al.  Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes. , 2018, ACS applied materials & interfaces.

[12]  R. Behm,et al.  MnPO4‐Coated Li(Ni0.4Co0.2Mn0.4)O2 for Lithium(‐Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics , 2018, Advanced Energy Materials.

[13]  Feng Wu,et al.  Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements , 2018, Journal of Power Sources.

[14]  W. Gui,et al.  The role of a MnO2 functional layer on the surface of Ni-rich cathode materials: Towards enhanced chemical stability on exposure to air , 2018, Ceramics International.

[15]  Hun‐Gi Jung,et al.  Improved Cycling Stability of Li[Ni0.90Co0.05Mn0.05]O2 Through Microstructure Modification by Boron Doping for Li‐Ion Batteries , 2018, Advanced Energy Materials.

[16]  Min-jae Choi,et al.  High‐Capacity Concentration Gradient Li[Ni0.865Co0.120Al0.015]O2 Cathode for Lithium‐Ion Batteries , 2018 .

[17]  Yimin A. Wu,et al.  Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping , 2018, Nature Energy.

[18]  Eunseog Cho,et al.  Intrinsic origin of intra-granular cracking in Ni-rich layered oxide cathode materials. , 2018, Physical chemistry chemical physics : PCCP.

[19]  Yuan Xue,et al.  Investigation on electrochemical performance of LiNi0.8Co0.15Al0.05O2 coated by heterogeneous layer of TiO2 , 2018 .

[20]  Evan M. Erickson,et al.  From Surface ZrO2 Coating to Bulk Zr Doping by High Temperature Annealing of Nickel‐Rich Lithiated Oxides and Their Enhanced Electrochemical Performance in Lithium Ion Batteries , 2018 .

[21]  Minjoon Park,et al.  Prospect and Reality of Ni‐Rich Cathode for Commercialization , 2018 .

[22]  Lei Wang,et al.  The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode material , 2018 .

[23]  Jinzhao Huang,et al.  Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives. , 2017, Small.

[24]  A. Manthiram,et al.  Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li[Ni0.9Co0.05Mn0.05]O2 Cathode for Lithium-Ion Batteries , 2017 .

[25]  Aijun Zhou,et al.  Stable, fast and high-energy-density LiCoO 2 cathode at high operation voltage enabled by glassy B 2 O 3 modification , 2017 .

[26]  C. Villevieille,et al.  Improved electrochemical performances of Li-rich nickel cobalt manganese oxide by partial substitution of Li+ by Mg2+ , 2017 .

[27]  M. Zheng,et al.  Improving the electrochemistry performance of layer LiNi0.5Mn0.3Co0.2O2 material at 4.5 V cutoff potential using lithium metaborate , 2017 .

[28]  David H. K. Jackson,et al.  Atomic Layer Deposited MgO: A Lower Overpotential Coating for Li[Ni0.5Mn0.3Co0.2]O2 Cathode. , 2017, ACS applied materials & interfaces.

[29]  Jianming Zheng,et al.  Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries , 2017, Nature Communications.

[30]  K. Du,et al.  Mg–Al–B co-substitution LiNi0.5Co0.2Mn0.3O2 cathode materials with improved cycling performance for lithium-ion battery under high cutoff voltage , 2016 .

[31]  Yan Xu,et al.  Multifunctional Li2O-2B2O3 coating for enhancing high voltage electrochemical performances and thermal stability of layered structured LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries , 2015 .

[32]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[33]  Feng Wu,et al.  Effect of Ni(2+) content on lithium/nickel disorder for Ni-rich cathode materials. , 2015, ACS applied materials & interfaces.

[34]  Min-Joon Lee,et al.  Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. , 2015, Angewandte Chemie.

[35]  Weifeng Huang,et al.  Manipulating the Electronic Structure of Li‐Rich Manganese‐Based Oxide Using Polyanions: Towards Better Electrochemical Performance , 2014 .

[36]  Jung-Hyun Kim,et al.  Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries , 2013 .

[37]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[38]  H. Sakaebe,et al.  Electrochemical properties of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode material modified by coating with Al 2 O 3 nanoparticles , 2011 .

[39]  J. Schmidt,et al.  Studies on LiFePO4 as cathode material using impedance spectroscopy , 2011 .

[40]  Aurelien Du Pasquier,et al.  Nano Li4Ti5O12–LiMn2O4 batteries with high power capability and improved cycle-life , 2009 .

[41]  Pengjian Zuo,et al.  Improved Electrochemical Performance of LiNi0.8Co0.15Al0.05O2 Cathode Material by Coating of Graphene Nanodots , 2019, Journal of The Electrochemical Society.

[42]  Doron Aurbach,et al.  Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes I. Nickel-Rich, LiNixCoyMnzO2 , 2017 .

[43]  Yang-Kook Sun,et al.  Nickel‐Rich and Lithium‐Rich Layered Oxide Cathodes: Progress and Perspectives , 2016 .

[44]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[45]  Yang‐Kook Sun,et al.  Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2 , 2014 .

[46]  Haegyeom Kim,et al.  Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries , 2014 .

[47]  Y. Ukyo,et al.  Theoretical and Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy Using a Symmetric Cell , 2012 .