A Parameterized Algorithm for Upward Planarity Testing

Upward planarity testing, or checking whether a directed graph has a drawing in which no edges cross and all edges point upward, is NP-complete. All of the algorithms for upward planarity testing developed previously focused on special classes of graphs. In this paper we develop a parameterized algorithm for upward planarity testing that can be applied to all graphs and runs in O(f(k)n 3 + g(k,l)n) time, where n is the number of vertices, k is the number of triconnected components, and l is the number of cutvertices. The functions f(k) and g(k,l) are defined as f(k)=k!8 k and \(g(k,\ell)=2^{3\cdot 2^\ell}k^{3\cdot 2^\ell} k!8^k\). Thus if the number of triconnected components and the number of cutvertices are small, the problem can be solved relatively quickly, even for a large number of vertices. This is the first parameterized algorithm for upward planarity testing.

[1]  Giuseppe Liotta,et al.  A Fixed-Parameter Approach to 2-Layer Planarization , 2001, Algorithmica.

[2]  Michael Kaufmann,et al.  Drawing graphs: methods and models , 2001 .

[3]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[4]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[5]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[6]  Ioannis G. Tollis,et al.  Area requirement and symmetry display of planar upward drawings , 1992, Discret. Comput. Geom..

[7]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[8]  Carlo Mannino,et al.  Upward drawings of triconnected digraphs , 2005, Algorithmica.

[9]  C. Thomassen Planar acyclic oriented graphs , 1989 .

[10]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[11]  Matthew Suderman,et al.  Journal of Graph Algorithms and Applications Experiments with the Fixed-parameter Approach for Two-layer Planarization , 2022 .

[12]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..

[13]  Giuseppe Liotta,et al.  Upward Planarity Checking: "Faces Are More than Polygons" , 1998, Graph Drawing.

[14]  Pat Morin,et al.  Path-Width and Three-Dimensional Straight-Line Grid Drawings of Graphs , 2002, GD.

[15]  Michael Kaufmann,et al.  Fixed Parameter Algorithms for one-sided crossing minimization Revisited , 2003, Graph Drawing.

[16]  Giuseppe Liotta,et al.  On the Parameterized Complexity of Layered Graph Drawing , 2001, ESA.

[17]  Walter Didimo,et al.  Quasi-Upward Planarity , 1998, Algorithmica.

[18]  Frank Harary,et al.  Graph Theory , 2016 .

[19]  Giuseppe Di Battista,et al.  Bipartite Graphs, Upward Drawings, and Planarity , 1990, Inf. Process. Lett..

[20]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[21]  Achilleas Papakostas Upward Planarity Testing of Outerplanar Dags , 1994, Graph Drawing.

[22]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[23]  M. Jünger,et al.  Level Planarity Testing in Linear Time , 1998, GD.

[24]  MICHAEL D. HUTTON,et al.  Upward planar drawing of single source acyclic digraphs , 1991, SODA '91.

[25]  Roberto Tamassia,et al.  Algorithms for Plane Representations of Acyclic Digraphs , 1988, Theor. Comput. Sci..

[26]  Carlo Mannino,et al.  Optimal Upward Planarity Testing of Single-Source Digraphs , 1998, SIAM J. Comput..

[27]  H. Chan A Parameterized Algorithm for Upward Planarity Testing of Biconnected Graphs , 2003 .