Ionospheric Correction Based on Ingestion of Global Ionospheric Maps into the NeQuick 2 Model

The global ionospheric maps (GIMs), generated by Jet Propulsion Laboratory (JPL) and Center for Orbit Determination in Europe (CODE) during a period over 13 years, have been adopted as the primary source of data to provide global ionospheric correction for possible single frequency positioning applications. The investigation aims to assess the performance of new NeQuick model, NeQuick 2, in predicting global total electron content (TEC) through ingesting the GIMs data from the previous day(s). The results show good performance of the GIMs-driven-NeQuick model with average 86% of vertical TEC error less than 10 TECU, when the global daily effective ionization indices (Az) versus modified dip latitude (MODIP) are constructed as a second order polynomial. The performance of GIMs-driven-NeQuick model presents variability with solar activity and behaves better during low solar activity years. The accuracy of TEC prediction can be improved further through performing a four-coefficient function expression of Az versus MODIP. As more measurements from earlier days are involved in the Az optimization procedure, the accuracy may decrease. The results also reveal that more efforts are needed to improve the NeQuick 2 model capabilities to represent the ionosphere in the equatorial and high-latitude regions.

[1]  Xinan Yue,et al.  GNSS radio occultation (RO) derived electron density quality in high latitude and polar region: NCAR-TIEGCM simulation and real data evaluation , 2013 .

[2]  Xinan Yue,et al.  Global 3‐D ionospheric electron density reanalysis based on multisource data assimilation , 2012 .

[3]  René Warnant,et al.  Ionosphere modelling for Galileo single frequency users: illustration of the combination of the NeQuick model and GNSS data ingestion , 2011 .

[4]  Alain Bourdillon,et al.  COST 296 action results for space weather ionospheric monitoring and modelling , 2010 .

[5]  René Warnant,et al.  Assessment of the NeQuick model at mid-latitudes using GNSS TEC and ionosonde data , 2010 .

[6]  Iwona Stanislawska,et al.  Near Earth space plasma monitoring under COST 296 , 2009 .

[7]  Ivan A. Galkin,et al.  Data ingestion and assimilation in ionospheric models , 2009 .

[8]  Justine Spits,et al.  Mitigation of ionospheric effects on GNSS , 2009 .

[9]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[10]  A. Garcia-Rigo,et al.  The IGS VTEC maps: a reliable source of ionospheric information since 1998 , 2009 .

[11]  Sandro M. Radicella,et al.  Ionospheric models for GNSS single frequency range delay corrections , 2008 .

[12]  Sandro M. Radicella,et al.  A new version of the NeQuick ionosphere electron density model , 2008 .

[13]  Ljiljana R. Cander,et al.  Ionospheric research and space weather services , 2008 .

[14]  Sandro M. Radicella,et al.  A near‐real‐time model‐assisted ionosphere electron density retrieval method , 2006 .

[15]  Sandro M. Radicella,et al.  A model assisted ionospheric electron density reconstruction method based on vertical TEC data ingestion , 2005 .

[16]  Reinhart Leitinger,et al.  An improved bottomside for the ionospheric electron density, model NeQuick , 2005 .

[17]  Jaume Sanz,et al.  Improvement of global ionospheric VTEC maps by using kriging interpolation technique , 2005 .

[18]  Jaume Sanz,et al.  Performance of different TEC models to provide GPS ionospheric corrections , 2002 .

[19]  Jaume Sanz,et al.  Combining GPS measurements and IRI model values for space weather specification , 2002 .

[20]  Xiaoqing Pi,et al.  Assessment of global TEC mapping using a three-dimensional electron density model , 1999 .

[21]  Xiaoqing Pi,et al.  Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data , 1999 .

[22]  Anthony J. Mannucci,et al.  A global mapping technique for GPS‐derived ionospheric total electron content measurements , 1998 .

[23]  S. M. Radicella,et al.  The improved DGR analytical model of electron density height profile and total electron content in the ionosphere , 1995 .

[24]  J. Klobuchar Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[25]  Reinhart Leitinger,et al.  Topside electron density in IRI and NeQuick: Features and limitations , 2006 .

[26]  Brent M. Ledvina,et al.  The ionosphere, radio navigation, and global navigation satellite systems , 2005 .

[27]  Sandro M. Radicella,et al.  The evolution of the DGR approach to model electron density profiles , 2001 .

[28]  S. Schaer Mapping and predicting the Earth's ionosphere using the Global Positioning System. , 1999 .

[29]  Leos Mervart,et al.  Global and regional ionosphere models using the GPS double difference phase observable , 1996 .

[30]  Markus Rothacher,et al.  Daily Global Ionosphere Maps Based on GPS Carrier Phase Data Routinely Produced by the CODE Analysis Center , 1996 .

[31]  Sandro M. Radicella,et al.  An analytical model of the electron density profile in the ionosphere , 1990 .

[32]  N. Brenning,et al.  Laboratory Experiments on the Magnetic Field and Neutral Density Limits on CIV Interaction , 1990 .