A 0.53mW ultra-low-power 3D face frontalization processor for face recognition with human-level accuracy in wearable devices

An ultra-low-power face frontalization processor (FFP) is proposed for accurate face recognition in wearable devices. 3D face frontalization is essential in face recognition to guarantee human-level accuracy even with rotated or tilted faces. To reduce external memory access (EMA), which causes large power consumption, regression weight quantization with K-means clustering is proposed with the result of 81.25% EMA reduction. In addition, pipelined memory-level zero-skipping regression reduces the EMA by additional 98.43% without latency overhead. Moreover, for low-power consumption of accelerating heterogeneous workload, energy-efficient shared PE array architecture is proposed. While accelerating computation intensive process by allocating large number of PEs for utilizing data-level parallelism, unused PEs are clock-gated for preventing needless power consumption during computationally light process. Proposed workload adaptation with clock-gating showed 37.14% power reduction. The proposed FFP was implemented in 65nm CMOS process, and showed 0.53mW power consumption with 4.73fps throughput, both of which satisfy condition for always-on face recognition in wearable devices.

[1]  Fernando De la Torre,et al.  Supervised Descent Method and Its Applications to Face Alignment , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Youchang Kim,et al.  14.6 A 0.62mW ultra-low-power convolutional-neural-network face-recognition processor and a CIS integrated with always-on haar-like face detector , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[3]  Ming Yang,et al.  DeepFace: Closing the Gap to Human-Level Performance in Face Verification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Thomas S. Huang,et al.  Interactive Facial Feature Localization , 2012, ECCV.

[5]  Tal Hassner,et al.  Effective face frontalization in unconstrained images , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Jian Sun,et al.  Face Alignment at 3000 FPS via Regressing Local Binary Features , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.