Time Domain Emulation of the Clavinet

The simulation of classic electromechanical musical instruments and audio effects has seen a great deal of activity in recent years, due in part to great recent increases in computing power. It is now possible to perform full emulations of relatively complex musical instruments in real time, or near real time. In this paper, time domain finite difference schemes are applied to the emulation of the Hohner Clavinet, an electromechanical stringed instrument exhibiting special features such as sustained hammer/string contact, pinning of the string to a metal stop, and a distributed damping mechanism. Various issues, including numerical stability, implementation details, and computational cost will be discussed. Simulation results and sound examples will be presented.