Dynamically Weighted Importance Sampling in Monte Carlo Computation

This article describes a new Monte Carlo algorithm, dynamically weighted importance sampling (DWIS), for simulation and optimization. In DWIS, the state of the Markov chain is augmented to a population. At each iteration, the population is subject to two move steps, dynamic weighting and population control. These steps ensure that DWIS can move across energy barriers like dynamic weighting, but with the weights well controlled and with a finite expectation. The estimates can converge much faster than they can with dynamic weighting. A generalized theory for importance sampling is introduced to justify the new algorithm. Numerical examples are given to show that dynamically weighted importance sampling can perform significantly better than the Metropolis–Hastings algorithm and dynamic weighting in some situations.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[3]  A. P. Altshuller Theoretical Evaluation of Atomic Polarizations of Diatomic Molecules , 1955 .

[4]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[5]  A. Barker Monte Carlo calculations of the radial distribution functions for a proton-electron plasma , 1965 .

[6]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[7]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[8]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[9]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[11]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[12]  Goodman,et al.  Multigrid Monte Carlo method. Conceptual foundations. , 1989, Physical review. D, Particles and fields.

[13]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[14]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[15]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[16]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[17]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[18]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[19]  Jun S. Liu,et al.  Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. , 1993, Science.

[20]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[21]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[22]  Sylvia Richardson,et al.  Markov chain concepts related to sampling algorithms , 1995 .

[23]  W H Wong,et al.  Dynamic weighting in Monte Carlo and optimization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Grassberger Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000 , 1997 .

[25]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[26]  P. Grassberger,et al.  Testing a new Monte Carlo algorithm for protein folding , 1997, Proteins.

[27]  Jun S. Liu,et al.  Rejection Control and Sequential Importance Sampling , 1998 .

[28]  Jun S. Liu,et al.  Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .

[29]  Rong Chen,et al.  A Theoretical Framework for Sequential Importance Sampling with Resampling , 2001, Sequential Monte Carlo Methods in Practice.

[30]  Faming Liang,et al.  A Theory for Dynamic Weighting in Monte Carlo Computation , 2001 .

[31]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[32]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[33]  A. Shapiro Monte Carlo Sampling Methods , 2003 .