Impact of Parameter Estimation on the Performance of the FSU Global Spectral Model Using Its Full-Physics Adjoint

Abstract The full-physics adjoint of the Florida State University Global Spectral Model at resolution T42L12 is applied to carry out parameter estimation using an initialized analysis dataset. The three parameters, that is, the biharmonic horizontal diffusion coefficient, the ratio of the transfer coefficient of moisture to the transfer coefficient of sensible heat, and the Asselin filter coefficient, as well as the initial condition, are optimally recovered from the dataset using adjoint parameter estimation. The fields at the end of the assimilation window starting from the retrieved optimal initial conditions and the optimally identified parameter values successfully capture the main features of the analysis fields. A number of experiments are conducted to assess the effect of carrying out 4D Var assimilation on both the initial conditions and parameters, versus the effect of optimally estimating only the parameters. A positive impact on the ensuing forecasts due to each optimally identified parameter ...

[1]  Ionel M. Navon,et al.  Documentation of the Tangent Linear and Adjoint Models of New MPI Version of the FSU Global Spectral Model , 2004 .

[2]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[3]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[4]  R. Fletcher Practical Methods of Optimization , 1988 .

[5]  W. Stern,et al.  A Description of the GFDL Global Spectral Model , 1982 .

[6]  Z. Pu,et al.  Using forecast sensitivity patterns to improve future forecast skill , 1997 .

[7]  Zhi Wang Variational data assimilation with 2-D shallow water equations and 3-D FSU global spectral models , 1993 .

[8]  G. J. Haltiner Numerical Prediction and Dynamic Meteorology , 1980 .

[9]  J. Derber,et al.  Variational Data Assimilation with an Adiabatic Version of the NMC Spectral Model , 1992 .

[10]  T. N. Krishnamurti,et al.  Physical initialization for numerical weather prediction over the tropics , 1991 .

[11]  Philip E. Gill,et al.  Practical optimization , 1981 .

[12]  M. Macvean The effects of horizontal diffusion on baroclinic development in a spectral model , 1983 .

[13]  Norman A. Phillips THE GENERAL CIRCULATION OF THE ATMOSPHERE: A NUMERICAL EXPERIMENT , 1960 .

[14]  Boris Katz,et al.  Recent Changes Implemented into the Global Forecast System at NMC , 1991 .

[15]  J. CARRICK MOORE,et al.  The General Circulation of the Atmosphere , 1892, Nature.

[16]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[17]  Werner Wergen,et al.  The effect of model errors in variational assimilation , 1992 .

[18]  Douglas K. Lilly,et al.  ON THE COMPUTATIONAL STABILITY OF NUMERICAL SOLUTIONS OF TIME-DEPENDENT NON-LINEAR GEOPHYSICAL FLUID DYNAMICS PROBLEMS , 1965 .

[19]  Richard W. Hamming,et al.  Numerical methods for scientists and engineers (2nd ed.) , 1986 .

[20]  Tadashi Tsuyuki,et al.  Variational data assimilation in the tropics using precipitation data part I: Column model , 1996 .

[21]  The General Circulation of the Atmosphere , 1910 .

[22]  W. Skamarock,et al.  The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations , 1992 .

[23]  G. Geernaert,et al.  Air-sea fluxes: 25 years of progress , 1996 .

[24]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[25]  Ionel M. Navon,et al.  Control Of Gravitational Oscillations in Variational Data Assimilation , 1993 .

[26]  Tadashi Tsuyuki,et al.  Variational Data Assimilation in the Tropics Using Precipitation Data. Part II: 3D Model , 1996 .

[27]  Masao Kanamitsu,et al.  Description of the NMC Global Data Assimilation and Forecast System , 1989 .

[28]  M. Kanamitsu,et al.  Description of the JMA operational spectral model , 1983 .

[29]  R. J. Reed,et al.  A CONTRIBUTION TO THE PROBLEM OF STRATOSPHERIC DIFFUSION BY LARGE-SCALE MIXING , 1965 .

[30]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[31]  M. Cullen,et al.  Numerical Prediction and Dynamic Meteorology, 2nd Edn. By G. J. HALTINER and R. T. WILLIAMS. Wiley, 1980. 477 pp. £26.90. , 1984, Journal of Fluid Mechanics.

[32]  Ionel M. Navon,et al.  Incomplete observations and control of gravity waves in variational data assimilation , 1992 .

[33]  Lisan Yu,et al.  Variational Estimation of the Wind Stress Drag Coefficient and the Oceanic Eddy Viscosity Profile , 1991 .

[34]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 3. Application to Synthetic and Field Data , 1986 .

[35]  P. Courtier,et al.  Four-dimensional variational data assimilation using the adjoint of a multilevel primitive-equation model , 1991 .

[36]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[37]  F. X. Le Dimet,et al.  Variational and Optimization Methods in Meteorology : A Review by , 1988 .

[38]  C. Leith Atmospheric Predictability and Two-Dimensional Turbulence , 1971 .

[39]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .

[40]  S. Nash,et al.  Linear and Nonlinear Programming , 1987 .

[41]  Richard Asselin,et al.  Frequency Filter for Time Integrations , 1972 .

[42]  A. Dyer The turbulent transport of heat and water vapour in an unstable atmosphere , 1967 .

[43]  J. M. Lewis,et al.  The Adjustment of Surface Wind and Pressure by Sasaki's Variational Matching Technique , 1972 .

[44]  André Robert,et al.  The Integration of a Low Order Spectral Form of the Primitive Meteorological Equations , 1966 .

[45]  G. Chavent Identification of functional parameters in partial differential equations , 1974 .