Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers

The concentrically-layered photonic structure found in the tropical fruit Margaritaria nobilis serves as inspiration for photonic fibers with mechanically tunable band-gap. The fibers show the spectral filtering capabilities of a planar Bragg stack while the microscopic curvature decreases the strong directional chromaticity associated with flat multilayers. Elongation of the elastic fibers results in a shift of the reflection of over 200 nm.

[1]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[2]  J. Bowmaker,et al.  Photonic Crystal Light Collectors in Fish Retina Improve Vision in Turbid Water , 2012, Science.

[3]  Seung-Man Yang,et al.  Flexible, Angle‐Independent, Structural Color Reflectors Inspired by Morpho Butterfly Wings , 2012, Advanced materials.

[4]  J. Baumberg,et al.  Direct assembly of three-dimensional mesh plasmonic rolls , 2012 .

[5]  Y. Utturkar,et al.  Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures , 2012, Nature Photonics.

[6]  Valeriy Luchnikov,et al.  Self-rolled polymer tubes: novel tools for microfluidics, microbiology, and drug-delivery systems. , 2011, Macromolecular rapid communications.

[7]  Jean-Pol Vigneron,et al.  Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration , 2011 .

[8]  Ullrich Steiner,et al.  Function of blue iridescence in tropical understorey plants , 2010, Journal of The Royal Society Interface.

[9]  J. Baumberg,et al.  Mimicking the colourful wing scale structure of the Papilio blumei butterfly. , 2010, Nature nanotechnology.

[10]  J. Baumberg,et al.  Stretch-tuneable dielectric mirrors and optical microcavities. , 2010, Optics express.

[11]  Steven G. Johnson,et al.  Meep: A flexible free-software package for electromagnetic simulations by the FDTD method , 2010, Comput. Phys. Commun..

[12]  J. Baumberg,et al.  Scalable Cylindrical Metallodielectric Metamaterials , 2009 .

[13]  A. G. Hiorns,et al.  Developing optical efficiency through optimized coating structure: biomimetic inspiration from white beetles. , 2009, Applied optics.

[14]  P. Vukusic,et al.  A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves , 2009, Journal of The Royal Society Interface.

[15]  A. Ajji,et al.  Color-changing and color-tunable photonic bandgap fiber textiles. , 2008, Optics express.

[16]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[17]  M. Galetti,et al.  Frugivory on Margaritaria nobilis L.f. (Euphorbiaceae): poor investment and mimetism , 2008 .

[18]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[19]  O. Shapira,et al.  Towards multimaterial multifunctional fibres that see, hear, sense and communicate. , 2007, Nature materials.

[20]  Radislav A. Potyrailo,et al.  Morpho butterfly wing scales demonstrate highly selective vapour response , 2007 .

[21]  Benny Hallam,et al.  Brilliant Whiteness in Ultrathin Beetle Scales , 2007, Science.

[22]  Alain Cornet,et al.  Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Luke P. Lee,et al.  Inspirations from Biological Optics for Advanced Photonic Systems , 2005, Science.

[24]  Shuichi Kinoshita,et al.  Structural colors in nature: the role of regularity and irregularity in the structure. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[26]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[27]  J. Sambles,et al.  Structurally assisted blackness in butterfly scales , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  R. Wootton,et al.  Remarkable iridescence in the hindwings of the damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae) , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[30]  Rodolfo H. Torres,et al.  Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays , 2003, Journal of Experimental Biology.

[31]  J. Joannopoulos,et al.  Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission , 2002, Nature.

[32]  Burak Temelkuran,et al.  External Reflection from Omnidirectional Dielectric Mirror Fibers , 2002, Science.

[33]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[34]  Akihiro Yoshida,et al.  Antireflective Nanoprotuberance Array in the Transparent Wing of a Hawkmoth, Cephonodes hylas , 1997 .

[35]  P. Yeh,et al.  Theory of Bragg fiber , 1978 .

[36]  David W. Lee,et al.  Physical basis and ecological significance of iridescence in blue plants , 1975, Nature.

[37]  J. Goodman Introduction to Fourier optics , 1969 .

[38]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[39]  Wesley Rodrigues Silva,et al.  Seed dispersal and frugivory : ecology, evolution, and conservation , 2002 .

[40]  David W. Lee Iridescent blue plants , 1997 .

[41]  M F Land,et al.  The physics and biology of animal reflectors. , 1972, Progress in biophysics and molecular biology.

[42]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.