Sampling points on regular parametric curves with control of their distribution

We propose an iterative algorithm to generate a sequence of a prescribed number of points on a parametric curve with control of their distribution. Our algorithm depends on a free parameter which controls the achievement of a final distribution of points lying between two extreme cases: uniform arc length distribution and bending energy dependent distribution. This is obtained by computing a reparametrization function that interpolates the inverse of the arc length function at equidistant arguments. The proposed reparametrization function is a C1 rational linear spline, therefore if the original curve is a NURBS then the reparametrized curve is also a NURBS of the same degree, but with an enlarged set of knots.

[1]  J. Waldvogel,et al.  Numerical Analysis: A Comprehensive Introduction , 1989 .

[2]  Christophe Schlick,et al.  Accurate parametrization of conics by NURBS , 1996, IEEE Computer Graphics and Applications.

[3]  Gregory M. Nielson,et al.  7. On the Problem of Determining the Distance between Parametric Curves , 1992, Curve and Surface Design.

[4]  Gershon Elber,et al.  Symbolic and Numeric Computation in Curve Interrogation , 1995, Comput. Graph. Forum.

[5]  Bert Jüttler,et al.  Cartesian spline interpolation for industrial robots , 1998, Comput. Aided Des..

[6]  Michael Kallay,et al.  Monotone linear rational spline interpolation , 1992, Comput. Aided Geom. Des..

[7]  Richard R. Patterson,et al.  Projective transformations of the parameter of a Bernstein-Bézier curve , 1985, TOGS.

[8]  Sabine Coquillart,et al.  A Control-Point-Based Sweeping Technique , 1987, IEEE Computer Graphics and Applications.

[9]  Rida T. Farouki,et al.  Optimal parameterizations , 1997, Comput. Aided Geom. Des..

[10]  Utz Wever Optimal parameterization for cubic splines , 1991, Comput. Aided Des..

[11]  Giulio Casciola,et al.  Reparametrization of NURBS Curves , 1996, Int. J. Shape Model..

[12]  Carla Manni,et al.  Computation of optimal composite re-parameterizations , 2001, Comput. Aided Geom. Des..

[13]  D. C. H. Yang,et al.  Nearly arc-length parameterized quintic-spline interpolation for precision machining , 1993, Comput. Aided Des..

[14]  Rida T. Farouki,et al.  Real rational curves are not 'unit speed' , 1991, Comput. Aided Geom. Des..

[15]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.