Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

[1]  X. Bao,et al.  Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. , 2010, Chemical communications.

[2]  L. Kavan,et al.  Facile Conversion of Electrospun TiO2 into Titanium Nitride/Oxynitride Fibers , 2010 .

[3]  Lei Jiang,et al.  Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[4]  G. Lu,et al.  Structure and Capacitive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V2O5† , 2010 .

[5]  J. Cabana,et al.  High rate performance of lithium manganese nitride and oxynitride as negative electrodes in lithium batteries , 2010 .

[6]  Yen Wei,et al.  One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. , 2009, Small.

[7]  Lei Jiang,et al.  Hollow Micro/Nanomaterials with Multilevel Interior Structures , 2009 .

[8]  K. Suslick,et al.  Dual Templating Synthesis of Mesoporous Titanium Nitride Microspheres , 2009 .

[9]  Xiangwu Zhang,et al.  Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries , 2009 .

[10]  Xiaoping Zhou,et al.  Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material , 2009 .

[11]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[12]  A. Yarin,et al.  Co-electrospinning of core-shell fibers using a single-nozzle technique. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[13]  M. Márquez,et al.  Confined Assembly in Coaxially Electrospun Block Copolymer Fibers , 2006 .

[14]  Younan Xia,et al.  Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. , 2006, Nano letters.

[15]  Yu‐Guo Guo,et al.  Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. , 2006, Chemical communications.

[16]  R. Paine,et al.  Two-Stage Aerosol Synthesis of Titanium Nitride TiN and Titanium Oxynitride TiOxNy Nanopowders of Spherical Particle Morphology , 2006 .

[17]  Prashant N. Kumta,et al.  Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors , 2006 .

[18]  F. Béguin,et al.  A Self‐Supporting Electrode for Supercapacitors Prepared by One‐Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends , 2005 .

[19]  D. Choi,et al.  Chemically Synthesized Nanostructured VN for Pseudocapacitor Application , 2005 .

[20]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[21]  Ehud Kroll,et al.  MULTIPLE JETS IN ELECTROSPINNING: EXPERIMENT AND MODELING , 2005 .

[22]  Seong-Ho Yoon,et al.  Electric double-layer capacitance of microporous carbon nano spheres prepared through precipitation of aromatic resin pitch , 2005 .

[23]  G. Rutledge,et al.  Production of Submicrometer Diameter Fibers by Two‐Fluid Electrospinning , 2004 .

[24]  Eyal Zussman,et al.  Experimental investigation of the governing parameters in the electrospinning of polymer solutions , 2004 .

[25]  Jochen Fricke,et al.  Carbon Aerogels for Electrochemical Double Layer Capacitors , 2003 .

[26]  Andreas Greiner,et al.  Compound Core–Shell Polymer Nanofibers by Co‐Electrospinning , 2003 .

[27]  Deyang Qu,et al.  Studies of the activated carbons used in double-layer supercapacitors , 2002 .

[28]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .

[29]  Seong Chu Lim,et al.  Supercapacitors Using Single‐Walled Carbon Nanotube Electrodes , 2001 .

[30]  Michael P. Brenner,et al.  Electrospinning: A whipping fluid jet generates submicron polymer fibers , 2001 .

[31]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[32]  Darrell H. Reneker,et al.  Bending instability of electrically charged liquid jets of polymer solutions in electrospinning , 2000 .

[33]  M. Anderson,et al.  Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide , 2000 .

[34]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[35]  Mitsuhiro Nakamura,et al.  Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors , 1996 .

[36]  Aoki Ichiro,et al.  Electric double-layer capacitors with sheet-type polarizable electrodes and application of the capacitors , 1996 .

[37]  J. L. Kaschmitter,et al.  The Aerocapacitor: An Electrochemical Double‐Layer Energy‐Storage Device , 1993 .

[38]  S. Barnett,et al.  Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness , 1987 .

[39]  C. H. Hertz,et al.  A liquid compound jet , 1983, Journal of Fluid Mechanics.

[40]  G. Cui,et al.  Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. , 2011, ACS applied materials & interfaces.

[41]  Hongda Du,et al.  Capacitive Behavior and Charge Storage Mechanism of Manganese Dioxide in Aqueous Solution Containing Bivalent Cations , 2009 .

[42]  V. Bondarenka VALENCE OF VANADIUM IN HYDRATED COMPOUNDS , 2007 .