Output feedback H∞ control of continuous-time infinite Markovian jump linear systems via LMI methods

The output feedback H∞ control is addressed for a class of continuous-time Markov jump linear systems with the Markov process taking values in an infinite countable set S. We consider that only an output and the jump parameters are available to the controller. Via a certain Bounded Real Lemma, together with some extensions of Schur complements and of the Projection Lemma, a theorem which characterizes whether there exist or not a full-order solution to the disturbance attenuation problem is devised in terms of two different Linear Matrix Inequality (LMI) feasibility problems. This result connects the so-called projective approach to an LMI problem which is more amenable to computer solution, and hence for design. We conclude the paper with two design algorithms for the construction of such controllers.

[1]  Stephen P. Boyd,et al.  A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..

[2]  Pascal Gahinet,et al.  Explicit controller formulas for LMI-based H∞ synthesis , 1996, Autom..

[3]  Pascal Gahinet Reliable computation of H∞ central controllers near the optimum , 1992, 1992 American Control Conference.

[4]  Nirmal Kumar Bose,et al.  A simple general proof of Kharitonov's generalized stability criterion , 1987 .

[5]  M. Fragoso,et al.  Discrete-time LQ-optimal control problems for infinite Markov jump parameter systems , 1995, IEEE Trans. Autom. Control..

[6]  Michael Sebek,et al.  Discrete-time symmetric polynomial equations with complex coefficients , 1999, Kybernetika.

[7]  C. Scherer Mixed H2/H∞ Control , 1995 .

[8]  M.G. Todorov,et al.  Output feedback h∞ control of continuous-time infinite markovian jump linear systems via lmi methods , 2008, 2008 47th IEEE Conference on Decision and Control.

[9]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[10]  L. Ghaoui,et al.  LMI optimization for nonstandard Riccati equations arising in stochastic control , 1996, IEEE Trans. Autom. Control..

[11]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[12]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[13]  José Claudio Geromel,et al.  Output feedback control of Markov jump linear systems in continuous-time , 2000, IEEE Trans. Autom. Control..

[14]  V. Dragan,et al.  Stability and robust stabilization to linear stochastic systems described by differential equations with markovian jumping and multiplicative white noise , 2002 .

[15]  Marcelo D. Fragoso,et al.  Lyapunov coupled equations for continuous-time infinite Markov jump linear systems , 2002 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Li Li,et al.  On necessary and sufficient conditions for H∞ output feedback control of Markov jump linear systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[18]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[19]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[20]  D. Hinrichsen,et al.  Stochastic H∞ , 1998 .

[21]  Marcelo D. Fragoso,et al.  Optimal Control for Continuous-Time Linear Quadratic Problems with Infinite Markov Jump Parameters , 2001, SIAM J. Control. Optim..

[22]  Marcelo D. Fragoso,et al.  A Unified Approach for Stochastic and Mean Square Stability of Continuous-Time Linear Systems with Markovian Jumping Parameters and Additive Disturbances , 2005, SIAM J. Control. Optim..

[23]  R. P. Marques,et al.  Discrete-Time Markov Jump Linear Systems , 2004, IEEE Transactions on Automatic Control.

[24]  Marcelo D. Fragoso,et al.  Infinite Markov Jump Bounded Real Lemma , 2007, 2007 American Control Conference.