Two high-strength concretes (HSC) only differing in their aggregates—silico-calcareous and hematite—were heated at temperatures up to 450°C (1°C/min). The evolution of their microstructural parameters—porosity, pore structure, permeability—were analysed. Both concretes showed equivalent initial microstructural characteristics. From 60°C, heating generated a large capillary porosity characterized by pore accesses around 0.1 μm. The intensity and especially the width of the porosity peaks increased with temperature. For silico-calcareous HSC, macropores-50 to 0.3 μm—were detected by MIP studies at 250°C and especially at 450°C. They were correlated to microcracks visually observed at the surface of the probes. Up to 250°C, the intrinsic permeability increased similarly for both concretes. Between 250 and 450°C, permeability remained stable for hematite HSC while, for silico-calcareous HSC, a major change was noticed. A good correlation between permeability and total water porosity was observed. At 450°C, influence of the microcracks on permeability was greater than the impact of the increase of capillary pore size. As both concretes showed similar initial microstructural features, conclusion was reached that the differential behaviour can mainly be attributed to internal thermal gradients discrepancies related to the type of aggregates: hematite allows to limit thermal gradient and thus, thermo-mechanical stresses. It was globally observed that damage due to high temperature thermal treatments was lower for hematite HSC.RésuméDeux bétons à hautes performances se distinguant uniquement par leurs granulats—silico-calcaires et hématites—ont subi des traitements thermiques allant jusqu'à 450°C (1°C/min). L'évolution de leurs propriétés microstructurales —porosité, structure des pores, perméabilité—a été examinée. Initialement, les caractéristiques microstructurales des deux bétons sont identiques. Dès 60°C, le chauffage provoque l'apparition d'une importante porosité capillaire dont les accès de pore se situent au voisinage de 0,1 μm. L'intensité et surtout la largeur des pics de porosité augmentent avec la température. Pour le béton silico-calcaire, des macropores—dans la gamme 50 à 0.3 μm—ont également été mis en évidence par la porosimétrie mercure à partir de 250°C et surtout à 450°C. Ceux-ci ont été corrélés à des microfissures détectées visuellement à la surface des éprouvettes. Jusqu'à 250°C, on observe pour les deux bétons une augmentation de la perméabilité au gaz. Entre 250 et 450°C, ce paramètre n'évolue pas pour le béton d'hématite alors qu'une évolution majeure est de nouveau observée pour le béton silico-calcaire. Ces évolutions sont bien corrélées à celles de la porosité totale à l'eau. En tenant compte de la similitude microstructurale initiale de la phase cimentaire des deux bétons, cette différence de comportement a été principalement attribuée à des différences de gradients thermiques internes liées au type de granulats, l'hématite permettant de limiter les gradients thermiques et par conséquent les contraintes d'origine thermo-mécaniques. Globalement, l'endommagement lié aux traitements thermiques est moins conséquent pour le béton d'hématite.
[1]
Daniel Quenard,et al.
Spalling and pore pressure in HPC at high temperatures
,
2000
.
[2]
P. Aitcin,et al.
Mesure de la permeabilite aux gaz des betons : permeabilite apparente et permeabilite intrinseque. Partie I - Validation des concepts de Carman et de Klinkenberg dans le cas d'un BHP
,
1999
.
[3]
Gabriel A. Khoury,et al.
Compressive strength of concrete at high temperatures: a reassessment
,
1992
.
[4]
Wei Sun,et al.
Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800°C
,
2000
.
[5]
Franz-Josef Ulm,et al.
THE "CHUNNEL" FIRE. II: ANALYSIS OF CONCRETE DAMAGE
,
1999
.
[6]
G Sanjayan,et al.
SPALLING OF HIGH-STRENGTH SILICA FUME CONCRETE IN FIRE
,
1993
.
[7]
Sammy Chan,et al.
Comparison between high strength concrete and normal strength concrete subjected to high temperature
,
1996
.
[8]
L. Klinkenberg.
The Permeability Of Porous Media To Liquids And Gases
,
2012
.
[9]
M. A. Riley,et al.
Possible new method for the assessment of fire–damaged concrete
,
1991
.
[10]
M. F. Kotkata,et al.
Effect of silica fume on the phase composition and microstructure of thermally treated concrete
,
1996
.
[11]
Z. Bažant,et al.
Concrete at High Temperatures: Material Properties and Mathematical Models
,
1996
.
[12]
S. Diamond,et al.
On the occurrence of hollow-shell hydration grains in hydrated cement paste
,
2000
.
[13]
T Z Harmathy,et al.
THERMAL PROPERTIES OF CONCRETE AT ELEVATED TEMPERATURES
,
1970
.
[14]
C. Castillo,et al.
Effect of transient high temperature on high-strength concrete
,
1990
.
[15]
Nicholas J. Carino,et al.
NIST Special Publication 919 International Workshop on Fire Performance of High-Strength Concrete, NIST, Gaithersburg, MD, February 13-14, 1997 Proceedings
,
1997
.
[16]
J. Sercombe,et al.
Behavior of High Performance Concrete Under High Temperature (60-450°C) for Surface Long-Term Storage: Thermo-Hydro-Mechanical Residual Properties
,
2000
.
[17]
Z. Bažant,et al.
The chunnel fire. I: Chemoplastic softening in rapidly heated concrete
,
1999
.
[18]
Zdenek P. Bazant,et al.
Pore Pressure and Drying of Concrete at High Temperature
,
1978
.
[19]
A. Noumowé,et al.
Effet de hautes températures (20-600°C) sur le béton : cas particulier du béton a hautes performances
,
1995
.
[20]
Z. Sawicz,et al.
Changes in the structure of hardened cement paste due to high temperature
,
1984
.
[21]
C. Gallé,et al.
GAS PERMEABILITY OF UNSATURATED CEMENT-BASED MATERIALS: APPLICATION OF A MULTI-SCALE NETWORK MODEL
,
2000
.
[22]
F. S. Rostásy,et al.
Changes of pore structure of cement mortars due to temperature
,
1980
.